This study investigates the application of explainable AI (XAI) techniques to understand the deep learning models used for predicting urban conflict from satellite imagery. First, a ResNet18 convolutional neural network achieved 89% accuracy in distinguishing riot and non-riot urban areas. Using the Score-CAM technique, regions critical to the model’s predictions were identified, and masking these areas caused a 20.9% drop in the classification accuracy, highlighting their importance. However, Score-CAM’s ability to consistently localize key features was found to be limited, particularly in complex, multi-object urban environments. Analysis revealed minimal alignment between the model-identified features and traditional land use metrics, suggesting that deep learning captures unique patterns not represented in existing GIS datasets. These findings underscore the potential of deep learning to uncover previously unrecognized socio-spatial dynamics while revealing the need for improved interpretability methods. This work sets the stage for future research to enhance explainable AI techniques, bridging the gap between model performance and interpretability and advancing our understanding of urban conflict drivers.
more »
« less
Predicting Protests and Riots in Urban Environments With Satellite Imagery and Deep Learning
Conflict, manifesting as riots and protests, is a common occurrence in urban environments worldwide. Understanding their likely locations is crucial to policymakers, who may (for example) seek to provide overseas travelers with guidance on safe areas, or local policymakers with the ability to pre-position medical aid or police presences to mediate negative impacts associated with riot events. Past efforts to forecast these events have focused on the use of news and social media, restricting applicability to areas with available data. This study utilizes a ResNet convolutional neural network and high-resolution satellite imagery to estimate the spatial distribution of riots or protests within urban environments. At a global scale (N = 18,631 conflict events), by training our model to understand relationships between urban form and riot events, we are able to predict the likelihood that a given urban area will experience a riot or protest with accuracy as high as 97%. This research has the potential to improve our ability to forecast and understand the relationship between urban form and conflict events, even in data-sparse regions.
more »
« less
- Award ID(s):
- 2317591
- PAR ID:
- 10537813
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Transactions in GIS
- ISSN:
- 1361-1682
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Water insecurity may precipitate interpersonal conflict, although no studies to date have rigorously examined these relationships. We examined relationships between household demographics, water insecurity, regional conflict, and interpersonal conflict over water. Using survey data from eight sub-Saharan African countries, we found that interpersonal conflict within and outside the home is associated with multiple domains of water insecurity, particularly accessibility. Furthermore, we found that higher levels of remote violence and protests are associated with greater within household conflict, whereas riots and violent armed conflict are associated with greater conflict between neighbors. Our findings expand upon the current literature by examining factors affecting interpersonal conflict over water, which may become increasingly important as precipitation patterns and land temperatures change in this region.more » « less
-
With rising global temperatures, urban environments are increasingly vulnerable to heat stress, often exacerbated by the Urban Heat Island (UHI) effect. While most UHI research has focused on large metropolitan areas around the world, relatively smaller-sized cities (with a population 100 000–300 000) remain understudied despite their growing exposure to extreme heat and meteorological significance. In particular, urban heat advection (UHA), the transport of heat by mean winds, remains a key but underexplored mechanism in most modeling frameworks. High-resolution numerical weather prediction (NWP) models are essential tools for simulating urban hydrometeorological conditions, yet most prior evaluations have focused on retrospective reanalysis products rather than forecasts. In this study, we assess the performance of a widely used operational weather forecast model, the High-Resolution Rapid Refresh (HRRR), as a representative example of current NWP systems. We investigate its ability to predict spatial and temporal patterns of urban heat and UHA within and around Lubbock, Texas, a small-sized city located in a semi-arid environment in the southwestern US. Using data collected between 1 September 2023, and 31 August 2024 from the Urban Heat Island Experiment in Lubbock, Texas (U-HEAT) network and five West Texas Mesonet stations, we compare 18 h forecasts against in situ observations. HRRR forecasts exhibit a consistent nighttime cold bias at both urban and rural sites, a daytime warm bias at rural locations, and a pervasive dry bias across all seasons. The model also systematically overestimates near-surface wind speeds, further limiting its ability to accurately predict UHA. Although HRRR captures the expected slower nocturnal cooling in urban areas, it does not well capture advective heat transport under most wind regimes. Our findings reveal both systematic biases and urban representation limitations in current high-resolution NWP forecasts. Our forecast–observation comparisons underscore the need for improved urban parameterizations and evaluation frameworks focused on forecast skill, with important implications for heat-risk warning systems and forecasting in small and mid-sized cities.more » « less
-
We call for a relational approach to constructing protest event data from news sources to provide tools for detecting and correcting errors and for capturing the relations among events and between events and the texts describing them. We address two problems with most protest event datasets: (1) inconsistencies and errors in identifying events and (2) disconnect between data structures and what is known about how protests and media accounts of protests are produced. Relational data structures can capture the theoretically important structuring of events into campaigns and episodes and media attention cascades and cycles. Relational data structures support richer theorizing about the interplay of protests and their representations in news media discourses. We present preliminary illustrative data about Black protests from these new procedures to demonstrate the value of this approach.more » « less
-
Governmental and nongovernmental organizations have increasingly relied on early-warning systems of conflict to support their decisionmaking. Predictions of war intensity as probability distributions prove closer to what policymakers need than point estimates, as they encompass useful representations of both the most likely outcome and the lower-probability risk that conflicts escalate catastrophically. Point-estimate predictions, by contrast, fail to represent the inherent uncertainty in the distribution of conflict fatalities. Yet, current early warning systems are preponderantly focused on providing point estimates, while efforts to forecast conflict fatalities as a probability distribution remain sparse. Building on the predecessor VIEWS competition, we organize a prediction challenge to encourage endeavours in this direction. We invite researchers across multiple disciplinary fields, from conflict studies to computer science, to forecast the number of fatalities in state-based armed conflicts, in the form of the UCDP ‘best’ estimates aggregated to two units of analysis (country-months and PRIO-GRID-months), with estimates of uncertainty. This article introduces the goal and motivation behind the prediction challenge, presents a set of evaluation metrics to assess the performance of the forecasting models, describes the benchmark models which the contributions are evaluated against, and summarizes the salient features of the submitted contributions.more » « less
An official website of the United States government

