skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Benefits of Interdisciplinary Learning Opportunities for Undergraduate Mechanical Engineering Students.
Two project-based learning approaches were implemented in a 100-level information literacy class in the Mechanical Engineering program at a mid-Atlantic university. One approach, the treatment group, partnered engineering students with education students to develop and deliver engineering lessons that guide elementary school students through the engineering design process. In the second approach, the comparison group, engineering students were partnered with their engineering classmates to work on an engineering problem using the engineering design process. The two projects were designed to have similar durations and course point values. For both projects, teams were formed, and peer evaluations were completed, using the Comprehensive Assessment of Team Member Effectiveness (CATME) survey. This study examined how the two project-based learning approaches affected students' teamwork effectiveness. Data was collected from undergraduate engineering students assigned to groups in the comparison and treatment conditions from Fall 2019 to Fall 2022. Data was collected electronically through the CATME teammate evaluations and project reflections (treatment, n = 137; comparison, n = 112). CATME uses a series of questions assessed on a 5-point Likert scale. Quantitative analysis using Analysis of Variance (ANOVA) and Covariance (ANCOVA) showed that engineering students in the treatment group expected more quality, were more satisfied, and had more task commitment than engineering students working within their discipline. However, no statistically significant differences were observed for teamwork effectiveness categories such as contribution to the team’s work, interaction with teammates, keeping the team on track, and having relevant knowledge, skills, and abilities. This result suggests that engineering students who worked in interdisciplinary teams with an authentic audience (i.e., children) perceived higher quality in their projects and had higher levels of commitment to the task than their peers in the comparison group. A thematic analysis of the written reflections was conducted to further explain the results obtained for the three categories: expecting quality, satisfaction, and task commitment. The thematic analysis revealed that the treatment, or interdisciplinary, groups exhibited considerably more positive reflections than their comparison peers regarding the project in all three categories, supporting results obtained quantitatively.  more » « less
Award ID(s):
1908743
PAR ID:
10537857
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
ASEE Annual Conference & Exposition
Date Published:
Format(s):
Medium: X
Location:
Portland, Oregon
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Engineers need to develop professional skills, including the ability to work successfully in teams and to communicate within and outside of their discipline, in addition to required technical skills. A collaborative multi-disciplinary service learning project referred to as Ed+gineering was implemented in a 100-level mechanical engineering course. In this collaboration, mechanical engineering students, primarily in the second semester of their freshman year or first semester of their second year, worked over the course of a semester with education students taking a foundations course to develop and deliver engineering lessons to fourth or fifth graders. Students in comparison engineering classes worked on a team project focused on experimental design for a small satellite system. The purpose of this study was to determine if participating in the Ed+gineering collaboration had a positive effect on teamwork effectiveness and satisfaction when compared to the comparison class. In both team projects, the five dimensions of the Comprehensive Assessment of Team Member Effectiveness (CATME) system were used as a quantitative assessment. The five dimensions of CATME Behaviorally Anchored Ratings Scale (BARS) (contribution to the team’s work, interacting with teammates, keeping the team on track, expecting quality, and having relevant Knowledge, Skills, and Abilities - KSAs) were measured. Additionally, within the CATME platform team satisfaction, team interdependence and team cohesiveness were measured. ANCOVA analysis was used to assess the quantitative data from CATME. Preliminary results suggest that students in the treatment classes had higher team member effectiveness and overall satisfaction scores than students in the comparison classes. Qualitative data from reflections written at the completion of the aforementioned projects were used to explore these results. 
    more » « less
  2. Over the course of several semesters, two different project-based learning approaches were used in two undergraduate engineering courses–a 100-level introductory course that covered a general education requirement on information literacy and a 300-level fluid mechanics course. One project (treatment) was an interdisciplinary service-learning project, implemented with undergraduate engineering and education students who collaborated to develop and deliver engineering lessons to fourth and fifth-grade students in a field trip model. The other projects (comparison) involved a team-based design project contained within each class. In the 100-level course, students selected their project based on personal interests and followed the engineering design process to develop, test, and redesign a prototype. In the fluid mechanics class, students designed a pumped pipeline system for a hypothetical plant. This study aimed to determine whether participating in the interdisciplinary project affected students’ evaluation of their own and their teammates’ teamwork effectiveness skills, measured using the Behaviorally Anchored Rating Scale (BARS) version of the Comprehensive Assessment of Team Member Effectiveness (CATME). The five dimensions of CATME measured in this study are (1) contribution to the team’s work, (2) interacting with teammates, (3) keeping the team on track, (4) expecting quality, and (5) having relevant knowledge, skills, and abilities (KSAs). The quantitative data from CATME were analyzed using ANCOVA. Furthermore, since data were collected over three semesters and coincided with the pre, during, and post-phases of the COVID-19 pandemic, it was possible to examine the effects of the evolving classroom constraints over the course of the pandemic on the teamwork effectiveness skills of both the treatment and comparison classes. 
    more » « less
  3. The purpose of this research paper is to explore whether participation in an interdisciplinary collaboration program partnering Preservice Teachers (PST) and Undergraduate Engineering Students (UES) results in an increase in teamwork effectiveness. The interdisciplinary collaboration was designed as a service-learning project within existing undergraduate programs that included the development and delivery of engineering content to a K-12 audience. The collaborations were integrated into existing courses in two colleges, engineering and education. The Behaviorally Anchored Rating Scale (BARS) version of the Comprehensive Assessment of Team Member Effectiveness (CATME) was used midway and at the end of the project to evaluate teamwork effectiveness. Results of the analysis indicated that both PST and UES experienced a significant increase in team-member effectiveness over the course of the project in four of the five factors: interacting with team members, keeping the team on track, expecting quality, and having relevant knowledge, skills and abilities. A noticeable positive increase in student attitudes towards the task was also observed between the midway and the end of the project. Analysis also suggests that the gain in the teamwork effectiveness did not differ across majors, with both UES and PST showing similar gains. Findings from this study provide some preliminary evidence that an innovative interdisciplinary service learning experience partnering engineering and education students, had a positive impact on their teamwork skills. 
    more » « less
  4. There is growing evidence of the effectiveness of project-based learning (PBL) in preparing students to solve complex problems. In PBL implementations in engineering, students are treated as professional engineers facing projects centered around real-world problems, including the complexity and uncertainty that influence such problems. Not only does this help students to analyze and solve an authentic real-world task, promoting critical thinking, but also students learn from each other, learning valuable communication and teamwork skills. Faculty play an important part by assuming non-conventional roles (e.g., client, senior professional engineer, consultant) to help students throughout this instructional and learning approach. Typically in PBLs, students work on projects over extended periods of time that culminate in realistic products or presentations. In order to be successful, students need to learn how to frame a problem, identify stakeholders and their requirements, design and select concepts, test them, and so on. Two different implementations of PBL projects in a fluid mechanics course are presented in this paper. This required, junior-level course has been taught since 2014 by the same instructor. The first PBL project presented is a complete design of pumped pipeline systems for a hypothetical plant. In the second project, engineering students partnered with pre-service teachers to design and teach an elementary school lesson on fluid mechanics concepts. With the PBL implementations, it is expected that students: 1) engage in a deeper learning process where concepts can be reemphasized, and students can realize applicability; 2) develop and practice teamwork skills; 3) learn and practice how to communicate effectively to peers and to those from other fields; and 4) increase their confidence working on open-ended situations and problems. The goal of this paper is to present the experiences of the authors with both PBL implementations. It explains how the projects were scaffolded through the entire semester, including how the sequence of course content was modified, how team dynamics were monitored, the faculty roles, and the end products and presentations. Students' experiences are also presented. To evaluate and compare students’ learning and satisfaction with the team experience between the two PBL implementations, a shortened version of the NCEES FE exam and the Comprehensive Assessment of Team Member Effectiveness (CATME) survey were utilized. Students completed the FE exam during the first week and then again during the last week of the semester in order to assess students’ growth in fluid mechanics knowledge. The CATME survey was completed mid-semester to help faculty identify and address problems within team dynamics, and at the end of the semester to evaluate individual students’ teamwork performance. The results showed that no major differences were observed in terms of the learned fluid mechanics content, however, the data showed interesting preliminary observations regarding teamwork satisfaction. Through reflective assignments (e.g., short answer reflections, focus groups), student perceptions of the PBL implementations are discussed in the paper. Finally, some of the challenges and lessons learned from implementing both projects multiple times, as well as access to some of the PBL course materials and assignments will be provided. 
    more » « less
  5. Ability to effectively work in teams is one of the desired outcomes of engineering and engineering technology programs. Unfortunately, working in teams is still challenging for many students. Rather than contributing to team projects, some students resort to social loafing. Social loafing tends to destroy both teamwork performance and individual learning, especially in solving ill-structured problems, such as design. Furthermore, a bad experience on a past team is a significant concern as it could generate negative feelings toward future team projects. Formation of collaborative teams is a critical first step in team-project-based design courses as team composition directly affects not only teamwork processes and outcomes, but also teamwork skills and experience. This NSF-IUSE sponsored project aims to enhance students’ teamwork experiences and teamwork learning through 1) understanding how to form better student design teams and 2) identifying exercises that will effectively improve team member collaboration. We do this by comparing student characteristics and design task characteristics with the quality of the design team outcome, and examining the resulting correlations. Student characteristics cover six categories: 1) background information, 2) work structure preferences, 3) personality, 4) ability, 5) motivation, and 6) attitude. Task characteristics and design team outcomes are characterized using the Creative Product Semantic Scale. In this article, we present correlations between student/team characteristics and design project outcome, and correlations between task characteristics and design project outcome for 2020-2021 senior design teams at two institutions. For both institutions, we will present correlations between individual student characteristics and team outcome. For one institution, we will also present correlation between team-level characteristics and team outcomes. 
    more » « less