In distributed multiplayer games, it can be difficult to communicate strategic information for planning game moves and player interactions. Often, players spend extra time communicating, reducing their engagement in the game. Visual annotations in game maps and in the gameworld can address this problem and result in more efficient player communication. We studied the impact of real-time feedback on planning annotations, specifically two different annotation types, in a custom-built, third-person, multiplayer game and analyzed their effects on player performance, experience, workload, and annotation use. We found that annotations helped engage players in collaborative planning, which reduced frustration, and shortened goal completion times. Based on these findings, we discuss how annotating in virtual game spaces enables collaborative planning and improves team performance.
more »
« less
Visualizing Learning in a Social Data Science Educational Game World
Our poster explores visualization methods for participation in an identity-aligned, multiplayer video game world for learning data science through relationship and community building. We extend methods of representing engagement and learning in both educational games and in data science education contexts. Using simulated game play data and screen capture records of interviews with middle school girls playing an early version of the game, we explore representations for individual and multiplayer learning.
more »
« less
- Award ID(s):
- 2214516
- PAR ID:
- 10537994
- Editor(s):
- Lindgren, R; Asino, T I; Kyza, E A; Looi, C K; Keifert, D T; Suárez, E
- Publisher / Repository:
- Proceedings of the 18th International Conference of the Learning Sciences - ICLS 2024
- Date Published:
- ISBN:
- 979-8-9906980-0-0
- Page Range / eLocation ID:
- 2229 to 2230
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This emerging technology report introduces the WearableLearning (WL) platform as a tool to exercise computational thinking and STEM learning for 5-12th grade students through mobile technology-augmented active game play and game creation. Freely available at WearableLearning.org, it allows students and teachers to play, create, debug, and manage multiplayer, active games. To date, WearableLearning has been used in schools and afterschool programs by roughly 500 students and 25 teachers to create games covering STEM curricular content. WearableLearning enables the creation of physically active and social games, while offering possibilities for research on computational thinking, embodied cognition, collaborative learning, game-based learning, and practical applications of technology in STEM classrooms.more » « less
-
Familiarity with manufacturing environments is an essential aspect for many engineering students. However, such environments in real world often contain expensive equipment making them difficult to recreate in an educational setting. For this reason, simulated physical environments where the process is approximated using scaled-down representations are usually used in education. However, such physical simulations alone may not capture all the details of a real environment. Virtual reality (VR) technology nowadays allows for the creation of fully immersive environments, bringing simulations to the next level. Using rapidly advancing gaming technology, this research paper explores the applicability of creating multiplayer serious games for manufacturing simulation. First, we create and validate a hands-on activity that engages groups of students in the design and assembly of toy cars. Then, a corresponding multiplayer VR game is developed, which allows for the collaboration of multiple VR users in the same virtual environment. With a VR headset and proper infrastructure, a user can participate in a simulation game from any location. This paper explores whether multiplayer VR simulations could be used as an alternative to physical simulations.more » « less
-
Familiarity with manufacturing environments is an essential aspect for many engineering students. However, such environments in real world often contain expensive equipment making them difficult to recreate in an educational setting. For this reason, simulated physical environments where the process is approximated using scaled-down representations are usually used in education. However, such physical simulations alone may not capture all the details of a real environment. Virtual reality (VR) technology nowadays allows for the creation of fully immersive environments, bringing simulations to the next level. Using rapidly advancing gaming technology, this research paper explores the applicability of creating multiplayer serious games for manufacturing simulation. First, we create and validate a hands-on activity that engages groups of students in the design and assembly of toy cars. Then, a corresponding multiplayer VR game is developed, which allows for the collaboration of multiple VR users in the same virtual environment. With a VR headset and proper infrastructure, a user can participate in a simulation game from any location. This paper explores whether multiplayer VR simulations could be used as an alternative to physical simulations.more » « less
-
An overarching goal of Artificial Intelligence (AI) is creating autonomous, social agents that help people. Two important challenges, though, are that different people prefer different assistance from agents and that preferences can change over time. Thus, helping behaviors should be tailored to how an individual feels during the interaction. We hypothesize that human nonverbal behavior can give clues about users' preferences for an agent's helping behaviors, augmenting an agent's ability to computationally predict such preferences with machine learning models. To investigate our hypothesis, we collected data from 194 participants via an online survey in which participants were recorded while playing a multiplayer game. We evaluated whether the inclusion of nonverbal human signals, as well as additional context (e.g., via game or personality information), led to improved prediction of user preferences between agent behaviors compared to explicitly provided survey responses. Our results suggest that nonverbal communication -- a common type of human implicit feedback -- can aid in understanding how people want computational agents to interact with them.more » « less
An official website of the United States government

