The Gordon Bell winning AWP-ODC application has a long history of boosted performance with MVAPICH on both CPU and GPU-based architectures. This talk will highlight a recent compression support implemented by the MVAPICH team, and its benefits to the large-scale earthquake simulation on the leadership class computing systems. The presentation will conclude with a discussion of the opportunities and technical challenges associated with the development of earthquake simulation software for Exascale computing.
more »
« less
This content will become publicly available on August 19, 2025
AWP-ODC with Topography and Discontinuous Mesh:Extreme-Scale Earthquake Simulation using MVAPICH
The Gordon Bell-winning AWP-ODC application continues to push the boundaries of earthquake simulation by leveraging the enhanced performance of MVAPICH on both CPU and GPU based architectures. This presentation highlights the recent improvements to the code and its application to broadband deterministic 3D wave propagation simulations of earthquake ground motions, incorporating high-resolution surface topography and detailed underground structures. The results of these simulations provide critical insights into the potential impacts of major earthquakes, contributing to more effective disaster preparedness and mitigation strategies. Additionally, the presentation will address the scientific and technical challenges encountered during the process and discuss the implications for future large-scale seismic studies on Exascale computing systems.
more »
« less
- Award ID(s):
- 2311833
- PAR ID:
- 10538040
- Publisher / Repository:
- Annual MVAPICH USER Group (MUG) Meeting
- Date Published:
- Format(s):
- Medium: X
- Location:
- Columbus
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The fault damage zone is a well-known structure of localized deformation around faults. Its material properties evolve over earthquake cycles due to coseismic damage accumulation and interseismic healing. We will present fully dynamic earthquake cycle simulations to show how the styles of earthquake nucleation and rupture propagation change as fault zone material properties vary temporally. First, we will focus on the influence of fault zone structural maturity quantified by near-fault seismic wave velocities in simulations. The simulations show that immature fault zones promote small and moderate subsurface earthquakes with irregular recurrence intervals, whereas mature fault zones host pulse-like earthquake rupture that can propagate to the surface, extend throughout the seismogenic zone, and occur at regular intervals. The interseismic healing in immature fault zones plays a key role in allowing the development of aseismic slip episodes including slow-slip events and creep, which can propagate into the seismogenic zone, and thus limit the sizes of subsequent earthquakes by releasing fault stress. In the second part, we will discuss how the precursory changes of seismic wave velocities of fault damage zones may affect earthquake nucleation process. Both laboratory experiments and seismic observations show that the abrupt earthquake failure can be preceded by accelerated fault deformation and the accompanying velocity reduction of near-fault rocks. We will use earthquake cycle simulations to systematically test the effects of timing and amplitudes of such precursory velocity changes. Our simulations will provide new insights into the interplay between fault zone structure and earthquake nucleation process, which can be used to guide future real-time monitoring of major fault zones.more » « less
-
null (Ed.)Exploring the spatiotemporal distribution of earthquake activity, especially earthquake migration of fault systems, can greatly to understand the basic mechanics of earthquakes and the assessment of earthquake risk. By establishing a three-dimensional strike-slip fault model, to derive the stress response and fault slip along the fault under regional stress conditions. Our study helps to create a long-term, complete earthquake catalog. We modelled Long-Short Term Memory (LSTM) networks for pattern recognition of the synthetical earthquake catalog. The performance of the models was compared using the mean-square error (MSE). Our results showed clearly the application of LSTM showed a meaningful result of 0.08% in the MSE values. Our best model can predict the time and magnitude of the earthquakes with a magnitude greater than Mw = 6.5 with a similar clustering period. These results showed conclusively that applying LSTM in a spatiotemporal series prediction provides a potential application in the study of earthquake mechanics and forecasting of major earthquake events.more » « less
-
Earthquake-related failure modes for embankment dams are commonly evaluated through numerical simulations using finite element or finite difference approaches. This is especially true for liquefaction triggering or cyclic softening of fine-grained materials where advanced constitutive models are used to capture the dynamic response of the dam and the nonlinear behavior of the soil. Both liquefaction and cyclic softening can lead to significant strength loss, which can lead to large deformations within the dam, but these numerical tools often cannot capture these large deformations due to excessive mesh distortion and subsequent numerical errors. This leads to significant uncertainties in estimating potential crest settlement, which is often a critical value for risk assessments of dams. Hybrid numerical methods like the material point method (MPM) offer a promising alternative to model large deformations, but their application to dams is still limited and relatively little validation has been done on using MPM for post-earthquake stability analyses. This study focuses on applying MPM simulations to evaluate the post-earthquake stability of a hypothetical embankment dam and to examine potential deformations of a flowslide that occurred in Palu, Indonesia in 2018. The MPM program Anura3D is used for the analyses with modifications to allow for assigning residual strengths. The results from the Palu flowslide are compared with observations from the field to show that the MPM analyses are able to capture the extent of the slide, but underpredict the measured displacements in the central portion of the flowslide. The analyses for the embankment dam are compared with post-earthquake stability results from finite difference analyses using FLAC. The MPM analyses are able to capture the full deformation of the flowslide, while the FLAC analyses are halted due to excessive mesh deformation. These results demonstrate the potential of MPM to be used as a complement to existing numerical tools for evaluating the seismic response of dams, but additional work is needed to validate this approach using case histories with both large and small deformations.more » « less
-
Abstract Dynamic rupture models are physics-based simulations that couple fracture mechanics to wave propagation and are used to explain specific earthquake observations or to generate a suite of predictions to understand the influence of frictional, geometrical, stress, and material parameters. These simulations can model single earthquakes or multiple earthquake cycles. The objective of this article is to provide a self-contained and practical guide for students starting in the field of earthquake dynamics. Senior researchers who are interested in learning the first-order constraints and general approaches to dynamic rupture problems will also benefit. We believe this guide is timely given the recent growth of computational resources and the range of sophisticated modeling software that are now available. We start with a succinct discussion of the essential physics of earthquake rupture propagation and walk the reader through the main concepts in dynamic rupture model design. We briefly touch on fully dynamic earthquake cycle models but leave the details of this topic for other publications. We also highlight examples throughout that demonstrate the use of dynamic rupture models to investigate various aspects of the faulting process.more » « less