skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A particle-in-cell study of electrostatic potential well formation in an edge-confined non-neutral plasma
An edge-confined single-species plasma will relax to create a potential energy hill that climbs from the boundary. This hill represents a potential well for species of the opposite sign and can be a means to confine the second species. With this ultimate application in mind, we have studied the relation between the plasma temperature, the number of confined particles, and the electrostatic potential well that forms in a fully non-neutral plasma of electrons in a trapping volume with an artificially structured boundary (ASB). An ASB is a structure that produces periodic short-range static electric and magnetic fields for confining a plasma. To perform a detailed analysis on this topic, simulations using a particle-in-cell code have been performed. By varying the configurational elements of the ASB, such as the bias on the boundary electrodes and the internal radius of the structure, coupled with a course thermalization process and a prescribed threshold for particle leakage, potential well values were determined for a range of plasma temperatures and confinement conditions. Maximum well depths were observed below a threshold plasma temperature in each configuration. This study gives insight into the limitations of primary particle confinement with this type of structure and optimal conditions for the formation of a potential well that might be utilized to confine a second species.  more » « less
Award ID(s):
1803047
PAR ID:
10538202
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
AIP Advances
Volume:
14
Issue:
8
ISSN:
2158-3226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The light curves of radioactive transients, such as supernovae and kilonovae, are powered by the decay of radioisotopes, which release high-energy leptons through $$\beta ^+$$ and $$\beta ^-$$ decays. These leptons deposit energy into the expanding ejecta. As the ejecta density decreases during expansion, the plasma becomes collisionless, with particle motion governed by electromagnetic forces. In such environments, strong or turbulent magnetic fields are thought to confine particles, though the origin of these fields and the confinement mechanism have remained unclear. Using fully kinetic particle-in-cell (PIC) simulations, we demonstrate that plasma instabilities can naturally confine high-energy leptons. These leptons generate magnetic fields through plasma streaming instabilities, even in the absence of pre-existing fields. The self-generated magnetic fields slow lepton diffusion, enabling confinement, and transferring energy to thermal electrons and ions. Our results naturally explain the positron trapping inferred from late-time observations of thermonuclear and core-collapse supernovae. Furthermore, they suggest potential implications for electron dynamics in the ejecta of kilonovae. We also estimate synchrotron radio luminosities from positrons for Type Ia supernovae and find that such emission could only be detectable with next-generation radio observatories from a Galactic or local-group supernova in an environment without any circumstellar material. 
    more » « less
  2. A model for plasma confinement is developed and applied for describing an electrically confined thermonuclear plasma. The plasma confinement model includes both an analytical approach that excludes space charge effects and a classical trajectory Monte Carlo simulation that accounts for space charge. The plasma consists of reactant ions that form a non-neutral plasma without electrons. The plasma drifts around a negatively charged electrode. Conditions are predicted for confining a deuterium–tritium plasma using a 460 kV applied electric potential difference. The ion plasma would have a 20 keV temperature, a 1020 m−3 peak density, and a 110 keV average kinetic energy per ion (including drift and thermal portions at a certain point in the plasma). The fusion energy production rate is predicted to be 10 times larger than the energy loss rate, including contributions associated with both plasma loss to electrodes and secondary electron emission. However, an approach for enhancing the fusion power density may have to be employed to realize a practical use for centrifugal-electrostatic confinement fusion. 
    more » « less
  3. Although the nuclear fusion process has received a great deal of attention in recent years, the amount of mathematical analysis that supports the stability of the system seems to be relatively insufficient. This paper deals with the mathematical analysis of the magnetic confinement of the plasma via kinetic equations. We prove the global wellposedness of the Vlasov-Maxwell system in a two-dimensional annulus when a huge (but finite-in-time) external magnetic potential is imposed near the boundary. We assume that the solution is axisymmetric. The authors hope that this work is a step towards a more generalized work on the three-dimensional Tokamak structure. The highlight of this work is the physical assumptions on the external magnetic potential well which remains finite within a finite time interval and from that, we prove that the plasma never touches the boundary. In addition, we provide a sufficient condition on the magnitude of the external magnetic potential to guarantee that the plasma is confined in an annulus of the desired thickness which is slightly larger than the initial support. Our method uses the cylindrical coordinate forms of the Vlasov-Maxwell system. 
    more » « less
  4. Boundary conditions influence the outcome of fluid dynamics in conventional passive fluid systems. Such an influence also extends to active fluid systems where fluid can flow by itself without an external driving force. For example, an active fluid that is confined in a thin cylinder can self-organize into a circulation along the central axis of the cylinder but thinning the cylinder to a disk-like geometry suppresses the formation of circulation. These phenomena demonstrated the role of confinement geometry on flow patterns of active fluid. Here, we demonstrate two flow patterns induced by confinement. First, we will show that active fluid can convect within a trapezoidal confinement. Such convection was in a temperature-uniform system, in contrast to Rayleigh-Bénard convection which is induced by a temperature gradient. This result suggested the feasibility of developing convection in a temperature-homogeneous system. Second, we demonstrate a confinement-induced stationary vortex near a corner of confinement whose corner angle is below a critical value. This is similar to conventional Moffatt eddies, except the fluid is internally driven. Our work paves the path to controlling self-organization of active fluid using confinement. 
    more » « less
  5. An Eulerian, numerical simulation is used to model the launching of plasma waves in a non-neutral plasma that is confined in a Penning–Malmberg trap. The waves are launched by applying an oscillating potential to an electrically isolated sector at one end of the conducting cylinder that bounds the confinement region and are received by another electrically isolated sector at the other end of the cylinder. The launching of both Trivelpiece–Gould waves and electron acoustic waves is investigated. Adopting a stratagem, the simulation captures essential features of the finite length plasma, while retaining the numerical advantages of a simulation employing periodic spatial boundary conditions. As a benchmark test of the simulation, the results for launched Trivelpiece–Gould waves of small amplitude are successfully compared to a linearized analytic solution for these fluctuations. 
    more » « less