skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 20, 2025

Title: An Elemental Decomposition of DNS Name-to-IP Graphs
The Domain Name System (DNS) is a critical piece of Internet infrastructure with remarkably complex properties and uses, and accordingly has been extensively studied. In this study we contribute to that body of work by organizing and analyzing records maintained within the DNS as a bipartite graph. We find that relating names and addresses in this way uncovers a surprisingly rich structure. In order to characterize that structure, we introduce a new graph decomposition for DNS name-to-IP mappings, which we term elemental decomposition. In particular, we argue that (approximately) decomposing this graph into bicliques — maximally connected components — exposes this rich structure. We utilize large-scale censuses of the DNS to investigate the characteristics of the resulting decomposition, and illustrate how the exposed structure sheds new light on a number of questions about how the DNS is used in practice and suggests several new directions for future research.  more » « less
Award ID(s):
2312710 2319369 2312711 2319368 2312709 2319367
PAR ID:
10538208
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISSN:
2641-9874
ISBN:
979-8-3503-8350-8
Page Range / eLocation ID:
1661 to 1670
Subject(s) / Keyword(s):
Internet Bipartite graph Domain Name System Computer security Monitoring
Format(s):
Medium: X
Location:
Vancouver, BC, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Domain name system (DNS) resolves the IP addresses of domain names and is critical for IP networking. Recent denial-of-service (DoS) attacks on the Internet targeted the DNS system (e.g., Dyn), which has the cascading effect of denying the availability of the services and applications relying on the targeted DNS. In view of these attacks, we investigate the DoS on the DNS system and introduce the query-crafting threats where the attacker controls the DNS query payload (the domain name) to maximize the threat impact per query (increasing the communications between the DNS servers and the threat time duration), which is orthogonal to other DoS approaches to increase the attack impact such as flooding and DNS amplification. We model the DNS system using a state diagram and comprehensively analyze the threat space, identifying the threat vectors which include not only the random/invalid domains but also those using the domain name structure to combine valid strings and random strings. Query-crafting DoS threats generate new domain-name payloads for each query and force increased complexity in the DNS query resolution. We test the query-crafting DoS threats by taking empirical measurements on the Internet and show that they amplify the DoS impact on the DNS system (recursive resolver) by involving more communications and taking greater time duration. To defend against such DoS or DDoS threats, we identify the relevant detection features specific to query-crafting threats and evaluate the defense using our prototype in CloudLab. 
    more » « less
  2. null (Ed.)
    Anycast has proven to be an effective mechanism to enhance resilience in the DNS ecosystem and for scaling DNS nameserver capacity, both in authoritative and the recursive resolver infrastructure. Since its adoption for root servers, anycast has mitigated the impact of failures and DDoS attacks on the DNS ecosystem. In this work, we quantify the adoption of anycast to support authoritative domain name service for top-level and second-level domains (TLDs and SLDs). Comparing two comprehensive anycast census datasets in 2017 and 2021, with DNS measurements captured over the same period, reveals that anycast adoption is increasing, driven by a few large operators. While anycast offers compelling resilience advantage, it also shifts some resilience risk to other aspects of the infrastructure. We discuss these aspects, and how the pervasive use of anycast merits a re-evaluation of how to measure DNS resilience. 
    more » « less
  3. nycast has proven to be an effective mechanism to enhance resilience in the DNS ecosystem and for scaling DNS nameserver capacity, both in authoritative and the recursive resolver infrastructure. Since its adoption for root servers, anycast has mitigated the impact of failures and DDoS attacks on the DNS ecosystem. In this work, we quantify the adoption of anycast to support authoritative domain name service for top-level and second-level domains (TLDs and SLDs). Comparing two comprehensive anycast census datasets in 2017 and 2021, with DNS measurements captured over the same period, reveals that anycast adoption is increasing, driven by a few large operators. While anycast offers compelling resilience advantage, it also shifts some resilience risk to other aspects of the infrastructure. We discuss these aspects, and how the pervasive use of anycast merits a re-evaluation of how to measure DNS resilience. 
    more » « less
  4. null (Ed.)
    This paper presents and evaluates Trufflehunter, a DNS cache snooping tool for estimating the prevalence of rare and sensitive Internet applications. Unlike previous efforts that have focused on small, misconfigured open DNS resolvers, Trufflehunter models the complex behavior of large multi-layer distributed caching infrastructures (e.g., such as Google Public DNS). In particular, using controlled experiments, we have inferred the caching strategies of the four most popular public DNS resolvers (Google Public DNS, Cloudflare Quad1, OpenDNS and Quad9). The large footprint of such resolvers presents an opportunity to observe rare domain usage, while preserving the privacy of the users accessing them. Using a controlled testbed, we evaluate how accurately Trufflehunter can estimate domain name usage across the U.S. Applying this technique in the wild, we provide a lower-bound estimate of the popularity of several rare and sensitive applications (most notably smartphone stalkerware) which are otherwise challenging to survey. 
    more » « less
  5. —Infrastructure-as-a-Service (IaaS), and more generally the “cloud,” like Amazon Web Services (AWS) or Microsoft Azure, have changed the landscape of system operations on the Internet. Their elasticity allows operators to rapidly allocate and use resources as needed, from virtual machines, to storage, to bandwidth, and even to IP addresses, which is what made them popular and spurred innovation. In this paper, we show that the dynamic component paired with recent developments in trust-based ecosystems (e.g., SSL certificates) creates so far unknown attack vectors. Specifically, we discover a substantial number of stale DNS records that point to available IP addresses in clouds, yet, are still actively attempted to be accessed. Often, these records belong to discontinued services that were previously hosted in the cloud. We demonstrate that it is practical, and time and cost efficient for attackers to allocate IP addresses to which stale DNS records point. Considering the ubiquity of domain validation in trust ecosystems, like SSL certificates, an attacker can impersonate the service using a valid certificate trusted by all major operating systems and browsers. The attacker can then also exploit residual trust in the domain name for phishing, receiving and sending emails, or possibly distribute code to clients that load remote code from the domain (e.g., loading of native code by mobile apps, or JavaScript libraries by websites). Even worse, an aggressive attacker could execute the attack in less than 70 seconds, well below common time-to-live (TTL) for DNS records. In turn, it means an attacker could exploit normal service migrations in the cloud to obtain a valid SSL certificate for domains owned and managed by others, and, worse, that she might not actually be bound by DNS records being (temporarily) stale, but that she can exploit caching instead. We introduce a new authentication method for trust-based domain validation that mitigates staleness issues without incurring additional certificate requester effort by incorporating existing trust of a name into the validation process. Furthermore, we provide recommendations for domain name owners and cloud operators to reduce their and their clients’ exposure to DNS staleness issues and the resulting domain takeover attacks. 
    more » « less