Terrestrial ecosystems are critical to human welfare and regulating Earth’s life support systems but many gaps in our knowledge remain regarding how terrestrial plant communities respond to changes in climate or human actions. I used field experiments distributed across three dryland ecosystems in North America to evaluate the consequences of changing precipitation and physical disturbance on plant community structure and function. Evidence from experiments and observational work exploring both plant community composition and ecological processes suggest that physical disturbance and precipitation reductions can reduce the diversity and function of these dryland ecosystems. Specifically, I found that aboveground net primary productivity could be reduced in an interactive manner when precipitation reductions and physical disturbance co-occur, and that within sites, this reduction in productivity was greater when growing-season precipitation was low. Further, I found that these dryland plant communities, commonly dominated by highly drought-resistant shrubs and perennial grasses, were not capable of compensating for the absence of these dominant shrubs and perennial grasses when they were removed by disturbance, and that precipitation reductions (as predicted to occur from anthropogenic climate change) exacerbate these gaps. Collectively, the results of the field experiment suggest that current management paradigms of maintaining cover and structure of native perennial plants in dryland systems are well founded and may be especially important as climate variability increases over time. Evaluating how these best management practices take place in the real world is an important extension of fundamental ecological research. To address the research-management gap in the context of dryland ecosystems in the western US, I used a set of environmental management plans and remotely sensed data to investigate how ecosystem services in drylands are accounted for, both as a supply from the land base and as a demand from stakeholders. Focusing on a less-investigated land base in the United States–areas owned and managed by the Department of Defense–I explored how ecosystem services are produced by this unique land management arrangement even if they are not explicitly managed for under current management schemes. My findings support a growing body of evidence that Department of Defense lands represent a valuable conservation opportunity, both for biodiversity and ecosystem services, if management regimes fully integrate the ecosystem services concept. 
                        more » 
                        « less   
                    
                            
                            Looking Back for the Future: The Ecology of Terrestrial Communities Through the Lens of Conservation Paleobiology
                        
                    
    
            Terrestrial ecosystems encompass a vast and vital component of Earth's biodiversity and ecosystem services. The effect of increased anthropogenic dominance on terrestrial communities defines major challenges for ecosystem conservation, including habitat destruction and fragmentation, climate change, species invasions and extinctions, and disease spread. Here, we integrate fossil, historical, and present-day organismal and ecological data to investigate how conservation paleobiology provides deep-time perspectives on terrestrial organisms, populations, communities, and ecosystems impacted by anthropogenic processes. We relate research tools to conservation outputs and highlight gaps that currently limit conservation paleobiology from reaching its full impact on conservation practice and management. In doing so, we also highlight how the colonial legacies of conservation biology and paleobiology confound our understanding of present-day biodiversity, ecosystem processes, and conservation outlooks, and we make recommendations for more inclusive and ethical practices moving forward. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2050228
- PAR ID:
- 10538409
- Publisher / Repository:
- Annual Reviews
- Date Published:
- Journal Name:
- Annual Review of Ecology, Evolution, and Systematics
- Volume:
- 54
- Issue:
- 1
- ISSN:
- 1543-592X
- Page Range / eLocation ID:
- 259 to 282
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Ecological flows across ecosystem boundaries are typically studied at spatial scales that limit our understanding of broad geographical patterns in ecosystem linkages. Aquatic insects that metamorphose into terrestrial adults are important resource subsidies for terrestrial ecosystems. Traits related to their development and dispersal should determine their availability to terrestrial consumers. Here, we synthesize geospatial, aquatic biomonitoring and biological traits data to quantify the relative importance of several environmental gradients on the potential spatial and temporal characteristics of aquatic insect subsidies across the contiguous United States. We found the trait composition of benthic macroinvertebrate communities varies among hydrologic regions and could affect how aquatic insects transport subsidies as adults. Further, several trait–environment relationships were underpinned by hydrology. Large bodied taxa that could disperse further from the stream were associated with hydrologically stable conditions. Alternatively, hydrologically variable conditions were associated with multivoltine taxa that could extend the duration of subsidies with periodic emergence events throughout the year. We also found that anthropogenic impacts decrease the frequency of individuals with adult flight but potentially extend the distance subsidies travel into the terrestrial ecosystem. Collectively, these results suggest that natural and anthropogenic gradients could affect aquatic insect subsidies by changing the trait composition of benthic macroinvertebrate communities. The conceptual framework and trait–environment relationships we present shows promise for understanding broad geographical patterns in linkages between ecosystems.more » « less
- 
            Abstract Near-time conservation palaeobiology uses palaeontological, archaeological and other geohistorical records to study the late Quaternary transition of the biosphere from its pristine past to its present-day, human-altered state. Given the scarcity of data on recent extinctions in the oceans, geohistorical records are critical for documenting human-driven extinctions and extinction threats in the marine realm. The historical perspective can provide two key insights. First, geohistorical records archive the state of pre-industrial oceans at local, regional and global scales, thus enabling the detection of recent extinctions and extirpations as well as shifts in species distribution, abundance, body size and ecosystem function. Second, we can untangle the contributions of natural and anthropogenic processes by documenting centennial-to-millennial changes in the composition and diversity of marine ecosystems before and after the onset of major human impacts. This long-term perspective identifies recently emerging patterns and processes that are unprecedented, thus allowing us to better assess human threats to marine biodiversity. Although global-scale extinctions are not well documented for brackish and marine invertebrates, geohistorical studies point to numerous extirpations, declines in ecosystem functions, increases in range fragmentation and dwindling abundance of previously widespread species, indicating that marine ecosystems are accumulating a human-driven extinction debt.more » « less
- 
            Rock glaciers and related cold rocky landforms: Overlooked climate refugia for mountain biodiversityAbstract Mountains are global biodiversity hotspots where cold environments and their associated ecological communities are threatened by climate warming. Considerable research attention has been devoted to understanding the ecological effects of alpine glacier and snowfield recession. However, much less attention has been given to identifying climate refugia in mountain ecosystems where present‐day environmental conditions will be maintained, at least in the near‐term, as other habitats change. Around the world, montane communities of microbes, animals, and plants live on, adjacent to, and downstream of rock glaciers and related cold rocky landforms (CRL). These geomorphological features have been overlooked in the ecological literature despite being extremely common in mountain ranges worldwide with a propensity to support cold and stable habitats for aquatic and terrestrial biodiversity. CRLs are less responsive to atmospheric warming than alpine glaciers and snowfields due to the insulating nature and thermal inertia of their debris cover paired with their internal ventilation patterns. Thus, CRLs are likely to remain on the landscape after adjacent glaciers and snowfields have melted, thereby providing longer‐term cold habitat for biodiversity living on and downstream of them. Here, we show that CRLs will likely act as key climate refugia for terrestrial and aquatic biodiversity in mountain ecosystems, offer guidelines for incorporating CRLs into conservation practices, and identify areas for future research.more » « less
- 
            Abstract Ongoing anthropogenic change is altering the planet at an unprecedented rate, threatening biodiversity, and ecosystem functioning. Species are responding to abiotic pressures at both individual and population levels, with changes affecting trophic interactions through consumptive pathways. Collectively, these impacts alter the goods and services that natural ecosystems will provide to society, as well as the persistence of all species. Here, we describe the physiological and behavioral responses of species to global changes on individual and population levels that result in detectable changes in diet across terrestrial and marine ecosystems. We illustrate shifts in the dynamics of food webs with implications for animal communities. Additionally, we highlight the myriad of tools available for researchers to investigate the dynamics of consumption patterns and trophic interactions, arguing that diet data are a crucial component of ecological studies on global change. We suggest that a holistic approach integrating the complexities of diet choice and trophic interactions with environmental drivers may be more robust at resolving trends in biodiversity, predicting food web responses, and potentially identifying early warning signs of diversity loss. Ultimately, despite the growing body of long‐term ecological datasets, there remains a dearth of diet ecology studies across temporal scales, a shortcoming that must be resolved to elucidate vulnerabilities to changing biophysical conditions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    