Children’s engagement in science, technology, engineering, and mathematics (STEM) is fundamental to developing scientific literacy. Informal learning environments, such as children’s museums, are a robust setting for fostering STEM engagement, particularly through parent-child interaction. Although the role of STEM learning has been frequently documented in informal learning environments, how children are engaged by STEM topics and STEM’s relation to children’s everyday lives has not been equally well studied. In this article, I suggest that there are ways that parent-child interaction during informal learning opportunities can relate to children’s engagement in STEM activities. A fundamental mechanism underlying this relation is how parents support children’s autonomy as they play together. Parent-child interaction relates to children’s STEM engagement not only in situ but also in how they generalize that behavior to their everyday activities, which opens up promising new lines of research.
This content will become publicly available on May 11, 2025
"It's Not a Replacement:" Enabling Parent-Robot Collaboration to Support In-Home Learning Experiences of Young Children
Learning companion robots for young children are increasingly adopted in informal learning environments. Although parents play a pivotal role in their children’s learning, very little is known about how parents prefer to incorporate robots into their children’s learning activities. We developed prototype capabilities for a learning companion robot to deliver educational prompts and responses to parent-child pairs during reading sessions and conducted in-home user studies involving 10 families with children aged 3–5. Our data indicates that parents want to work with robots as collaborators to augment parental activities to foster children’s learning, introducing the notion of parent-robot collaboration. Our findings offer an empirical understanding of the needs and challenges of parent-child interaction in informal learning scenarios and design opportunities for integrating a companion robot into these interactions. We offer insights into how robots might be designed to facilitate parent-robot collaboration, including parenting policies, collaboration patterns, and interaction paradigms.
more »
« less
- PAR ID:
- 10538453
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400703300
- Page Range / eLocation ID:
- 1 to 18
- Format(s):
- Medium: X
- Location:
- Honolulu HI USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Children’s early numerical knowledge establishes a foundation for later development of mathematics achievement and playing linear number board games is effective in improving basic numeri- cal abilities. Besides the visuo-spatial cues provided by traditional number board games, learning companion robots can integrate multi-sensory information and offer social cues that can support children’s learning experiences. We explored how young children experience sensory feedback (audio and visual) and social expressions from a robot when playing a linear number board game, “RoboMath.” We present the interaction design of the game and our investigation of children’s (n = 19, aged 4) and parents’ experiences under three conditions: (1) visual-only, (2) audio-visual, and (3) audio- visual-social robot interaction. We report our qualitative analysis, including the themes observed from interviews with families on their perceptions of the game and the interaction with the robot, their child’s experiences, and their design recommendations.more » « less
-
Adult verbal input occurs frequently during parent–child interactions. However, few studies have considered how parent language varies across informal STEM (science, technology, engineering, and math) activities. In this study, we examined how open and closed parent questions (a) differed across three STEM activities and (b) related to math, science, and vocabulary knowledge in their preschool-aged children. A total of 173 parents and their preschool children (Mage = 4 years) from lower socioeconomic households were video-recorded participating in three STEM-related activities: (a) a pretend grocery store activity, (b) a bridge-building challenge, and (c) a book read about a science topic. Parent questions were categorized as open or closed according to the presence of key question terms. Results indicate that the three activities elicited different frequencies of parent open and closed questions, with the grocery store activity containing the most open and closed questions. Children’s science knowledge was predicted by the frequency and proportion of parent open questions during the book read. These results enhance our understanding of the role of parent questions in young children’s language environments in different informal learning contexts.more » « less
-
Research in child-robot interactions suggests that engaging in “care-taking” of a social robot, such as tucking the robot in at night, can strengthen relationships formed between children and robots. In this work, we aim to better understand and explore the design space of caretaking activities with 10 children, aged 8–12 from eight families, involving an exploratory design session followed by a preliminary feasibility testing of robot caretaking activities. The design sessions provided insight into children’s current caretaking tasks, how they would take care of a social robot, and how these new caretaking activities could be integrated into their daily routines. The feasibility study tested two different types of robot caretaking tasks, which we call connection and utility, and measured their short term effects on children’s perceptions of and closeness to the social robot. We discuss the themes and present interaction design guidelines of robot caretaking activities for children.more » « less
-
Social robots are emerging as learning companions for children, and research shows that they facilitate the development of interest and learning even through brief interactions. However, little is known about how such technologies might support these goals in authentic environments over long-term periods of use and interaction. We designed a learning companion robot capable of supporting children reading popular-science books by expressing social and informational commentaries. We deployed the robot in homes of 14 families with children aged 10–12 for four weeks during the summer. Our analysis revealed critical factors that affected children’s long-term engagement and adoption of the robot, including external factors such as vacations, family visits, and extracurricular activities; family/parental involvement; and children’s individual interests. We present four in-depth cases that illustrate these factors and demonstrate their impact on children’s reading experiences and discuss the implications of our findings for robot design.more » « less