skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Null states and time evolution in a toy model of black hole dynamics
A<sc>bstract</sc> Spacetime wormholes can provide non-perturbative contributions to the gravitational path integral that make the actual number of stateseSin a gravitational system much smaller than the number of states$$ {e}^{S_{\textrm{p}}} $$ e S p predicted by perturbative semiclassical effective field theory. The effects on the physics of the system are naturally profound in contexts in which the perturbative description actively involvesN=O(eS) of the possible$$ {e}^{S_{\textrm{p}}} $$ e S p perturbative states; e.g., in late stages of black hole evaporation. Such contexts are typically associated with the existence of non-trivial quantum extremal surfaces. However, by forcing a simple topological gravity model to evolve in time, we find that such effects can also have large impact forN≪eS(in which case no quantum extremal surfaces can arise). In particular, even for smallN, the insertion of generic operators into the path integral can cause the non-perturbative time evolution to differ dramatically from perturbative expectations. On the other hand, this discrepancy is small for the special case where the inserted operators are non-trivial only in a subspace of dimensionD≪eS. We thus study this latter case in detail. We also discuss potential implications for more realistic gravitational systems.  more » « less
Award ID(s):
2107939
PAR ID:
10538635
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2024
Issue:
8
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The elliptic flow$$(v_2)$$ ( v 2 ) of$${\textrm{D}}^{0}$$ D 0 mesons from beauty-hadron decays (non-prompt$${\textrm{D}}^{0})$$ D 0 ) was measured in midcentral (30–50%) Pb–Pb collisions at a centre-of-mass energy per nucleon pair$$\sqrt{s_{\textrm{NN}}} = 5.02$$ s NN = 5.02  TeV with the ALICE detector at the LHC. The$${\textrm{D}}^{0}$$ D 0 mesons were reconstructed at midrapidity$$(|y|<0.8)$$ ( | y | < 0.8 ) from their hadronic decay$$\mathrm {D^0 \rightarrow K^-\uppi ^+}$$ D 0 K - π + , in the transverse momentum interval$$2< p_{\textrm{T}} < 12$$ 2 < p T < 12  GeV/c. The result indicates a positive$$v_2$$ v 2 for non-prompt$${{\textrm{D}}^{0}}$$ D 0 mesons with a significance of 2.7$$\sigma $$ σ . The non-prompt$${{\textrm{D}}^{0}}$$ D 0 -meson$$v_2$$ v 2 is lower than that of prompt non-strange D mesons with 3.2$$\sigma $$ σ significance in$$2< p_\textrm{T} < 8~\textrm{GeV}/c$$ 2 < p T < 8 GeV / c , and compatible with the$$v_2$$ v 2 of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties. 
    more » « less
  2. A<sc>bstract</sc> We examine the thermodynamics of a near-extremal Kerr black hole, and demonstrate that the geometry behaves as an ordinary quantum system with a vanishingly small degeneracy at low temperatures. This is in contrast with the classical analysis, which instead predicts a macroscopic entropy for the extremal Kerr black hole. Our results follow from a careful analysis of the gravitational path integral. Specifically, the low temperature canonical partition function behaves as$$ Z\sim {T}^{\frac{3}{2}}\ {e}^{S_0+c\log {S}_0} $$ Z T 3 2 e S 0 + c log S 0 , withS0the classical degeneracy andca numerical coefficient we compute. This is in line with the general expectations for non-supersymmetric near-extremal black hole thermodynamics, as has been clarified in the recent past, although cases without spherical symmetry have not yet been fully analyzed until now. We also point out some curious features relating to the rotational zero modes of the near-extremal Kerr black hole background that affects the coefficientc. This raises a puzzle when considering similar black holes in string theory. Our results generalize to other rotating black holes, as we briefly exemplify. 
    more » « less
  3. A<sc>bstract</sc> A time-dependent, flavour-tagged measurement ofCPviolation is performed withB0→ D+Dand$$ {B}_s^0 $$ B s 0 →$$ {D}_s^{+}{D}_s^{-} $$ D s + D s decays, using data collected by the LHCb detector in proton-proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 6 fb−1. InB0→ D+Ddecays theCP-violation parameters are measured to be$$ {\displaystyle \begin{array}{c}{S}_{D^{+}{D}^{-}}=-0.552\pm 0.100\left(\textrm{stat}\right)\pm 0.010\left(\textrm{syst}\right),\\ {}{C}_{D^{+}{D}^{-}}=0.128\pm 0.103\left(\textrm{stat}\right)\pm 0.010\left(\textrm{syst}\right).\end{array}} $$ S D + D = 0.552 ± 0.100 stat ± 0.010 syst , C D + D = 0.128 ± 0.103 stat ± 0.010 syst . In$$ {B}_s^0 $$ B s 0 →$$ {D}_s^{+}{D}_s^{-} $$ D s + D s decays theCP-violating parameter formulation in terms ofϕsand|λ|results in$$ {\displaystyle \begin{array}{c}{\phi}_s=-0.086\pm 0.106\left(\textrm{stat}\right)\pm 0.028\left(\textrm{syst}\right)\textrm{rad},\\ {}\mid {\lambda}_{D_s^{+}{D}_s^{-}}\mid =1.145\pm 0.126\left(\textrm{stat}\right)\pm 0.031\left(\textrm{syst}\right).\end{array}} $$ ϕ s = 0.086 ± 0.106 stat ± 0.028 syst rad , λ D s + D s = 1.145 ± 0.126 stat ± 0.031 syst . These results represent the most precise single measurement of theCP-violation parameters in their respective channels. For the first time in a single measurement,CPsymmetry is observed to be violated inB0→ D+Ddecays with a significance exceeding six standard deviations. 
    more » « less
  4. Abstract The first measurement of the multiplicity dependence of intra-jet properties of leading charged-particle jets in proton–proton (pp) collisions is reported. The mean charged-particle multiplicity and jet fragmentation distributions are measured in minimum-bias and high-multiplicity pp collisions at center-of-mass energy$$\sqrt{s}$$ s = 13 TeV using the ALICE detector. Jets are reconstructed from charged particles produced in the midrapidity region ($$|\eta | < 0.9$$ | η | < 0.9 ) using the sequential recombination anti-$$k_{\textrm{T}}$$ k T algorithm with jet resolution parametersR= 0.2, 0.3, and 0.4 for the transverse momentum ($$p_\textrm{T}$$ p T ) interval 5–110 GeV/c. The high-multiplicity events are selected by the forward V0 scintillator detectors. The mean charged-particle multiplicity inside the leading jet cone rises monotonically with increasing jet$$p_\textrm{T}$$ p T in qualitative agreement with previous measurements at lower energies. The distributions of jet fragmentation function variables$$z^{\textrm{ch}}$$ z ch and$$\xi ^{\textrm{ch}}$$ ξ ch are measured for different jet-$$p_\textrm{T}$$ p T intervals. Jet-$$p_\textrm{T}$$ p T independent fragmentation of leading jets is observed for wider jets except at high- and low-$$z^{\textrm{ch}}$$ z ch values. The observed “hump-backed plateau” structure in the$$\xi ^{\textrm{ch}}$$ ξ ch distribution indicates suppression of low-$$p_\textrm{T}$$ p T particles. In high-multiplicity events, an enhancement of the fragmentation probability of low-$$z^{\textrm{ch}}$$ z ch particles accompanied by a suppression of high-$$z^{\textrm{ch}}$$ z ch particles is observed compared to minimum-bias events. This behavior becomes more prominent for low-$$p_\textrm{T}$$ p T jets with larger jet radius. The results are compared with predictions of QCD-inspired event generators, PYTHIA 8 with Monash 2013 tune and EPOS LHC. It is found that PYTHIA 8 qualitatively reproduces the jet modification in high-multiplicity events except at high jet$$p_\textrm{T}$$ p T . These measurements provide important constraints to models of jet fragmentation. 
    more » « less
  5. A<sc>bstract</sc> The entanglement negativity$$ \mathcal{E} $$ E (A:B) is a useful measure of quantum entanglement in bipartite mixed states. In random tensor networks (RTNs), which are related to fixed-area states, it was found in ref. [1] that the dominant saddles computing the even Rényi negativity$$ {\mathcal{E}}^{(2k)} $$ E 2 k generically break theℤ2kreplica symmetry. This calls into question previous calculations of holographic negativity using 2D CFT techniques that assumedℤ2kreplica symmetry and proposed that the negativity was related to the entanglement wedge cross section. In this paper, we resolve this issue by showing that in general holographic states, the saddles computing$$ {\mathcal{E}}^{(2k)} $$ E 2 k indeed break theℤ2kreplica symmetry. Our argument involves an identity relating$$ {\mathcal{E}}^{(2k)} $$ E 2 k to thek-th Rényi entropy on subregionABin the doubled state$$ {\left.|{\rho}_{AB}\right\rangle}_{A{A}^{\ast }{BB}^{\ast }} $$ ρ AB A A BB , from which we see that theℤ2kreplica symmetry is broken down toℤk. Fork< 1, which includes the case of$$ \mathcal{E} $$ E (A:B) atk= 1/2, we use a modified cosmic brane proposal to derive a new holographic prescription for$$ {\mathcal{E}}^{(2k)} $$ E 2 k and show that it is given by a new saddle with multiple cosmic branes anchored to subregionsAandBin the original state. Using our prescription, we reproduce known results for the PSSY model and show that our saddle dominates over previously proposed CFT calculations neark= 1. Moreover, we argue that theℤ2ksymmetric configurations previously proposed are not gravitational saddles, unlike our proposal. Finally, we contrast holographic calculations with those arising from RTNs with non-maximally entangled links, demonstrating that the qualitative form of backreaction in such RTNs is different from that in gravity. 
    more » « less