Health care delivery is undergoing an accelerated period of digital transformation, spurred in part by the COVID-19 pandemic and the use of “virtual-first” care delivery models such as telemedicine. Medical education has responded to this shift with calls for improved digital health training, but there is as yet no universal understanding of the needed competencies, domains, and best practices for teaching these skills. In this paper, we argue that a “digital determinants of health” (DDoH) framework for understanding the intersections of health outcomes, technology, and training is critical to the development of comprehensive digital health competencies in medical education. Much like current social determinants of health models, the DDoH framework can be integrated into undergraduate, graduate, and professional education to guide training interventions as well as competency development and evaluation. We provide possible approaches to integrating this framework into training programs and explore priorities for future research in digitally-competent medical education.
Generative pretrained transformer (GPT) tools have been thriving, as ignited by the remarkable success of OpenAI’s recent chatbot product. GPT technology offers countless opportunities to significantly improve or renovate current health care research and practice paradigms, especially digital health interventions and digital health–enabled clinical care, and a future of smarter digital health can thus be expected. In particular, GPT technology can be incorporated through various digital health platforms in homes and hospitals embedded with numerous sensors, wearables, and remote monitoring devices. In this viewpoint paper, we highlight recent research progress that depicts the future picture of a smarter digital health ecosystem through GPT-facilitated centralized communications, automated analytics, personalized health care, and instant decision-making.
more » « less- Award ID(s):
- 2133106
- PAR ID:
- 10538729
- Publisher / Repository:
- JMIR Publications Inc.
- Date Published:
- Journal Name:
- Journal of Medical Internet Research
- Volume:
- 25
- ISSN:
- 1438-8871
- Page Range / eLocation ID:
- e49963
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Background Digital health is poised to transform health care and redefine personalized health. As Internet and mobile phone usage increases, as technology develops new ways to collect data, and as clinical guidelines change, all areas of medicine face new challenges and opportunities. Inflammatory bowel disease (IBD) is one of many chronic diseases that may benefit from these advances in digital health. This review intends to lay a foundation for clinicians and technologists to understand future directions and opportunities together. Objective This review covers mobile health apps that have been used in IBD, how they have fit into a clinical care framework, and the challenges that clinicians and technologists face in approaching future opportunities. Methods We searched PubMed, Scopus, and ClinicalTrials.gov to identify mobile apps that have been studied and were published in the literature from January 1, 2010, to April 19, 2019. The search terms were (“mobile health” OR “eHealth” OR “digital health” OR “smart phone” OR “mobile app” OR “mobile applications” OR “mHealth” OR “smartphones”) AND (“IBD” OR “Inflammatory bowel disease” OR “Crohn's Disease” (CD) OR “Ulcerative Colitis” (UC) OR “UC” OR “CD”), followed by further analysis of citations from the results. We searched the Apple iTunes app store to identify a limited selection of commercial apps to include for discussion. Results A total of 68 articles met the inclusion criteria. A total of 11 digital health apps were identified in the literature and 4 commercial apps were selected to be described in this review. While most apps have some educational component, the majority of apps focus on eliciting patient-reported outcomes related to disease activity, and a few are for treatment management. Significant benefits have been seen in trials relating to education, quality of life, quality of care, treatment adherence, and medication management. No studies have reported a negative impact on any of the above. There are mixed results in terms of effects on office visits and follow-up. Conclusions While studies have shown that digital health can fit into, complement, and improve the standard clinical care of patients with IBD, there is a need for further validation and improvement, from both a clinical and patient perspective. Exploring new research methods, like microrandomized trials, may allow for more implementation of technology and rapid advancement of knowledge. New technologies that can objectively and seamlessly capture remote data, as well as complement the clinical shift from symptom-based to inflammation-based care, will help the clinical and health technology communities to understand the full potential of digital health in the care of IBD and other chronic illnesses.more » « less
-
null (Ed.)Point-of-care diagnostics are a key technology for various safety-critical applications from providing diagnostics in developing countries lacking adequate medical infrastructure to fight infectious diseases to screening procedures for border protection. Digital microfluidics biochips are an emerging technology that are increasingly being evaluated as a viable platform for rapid diagnosis and point-of-care field deployment. In such a technology, processing errors are inherent. Cyber-physical digital biochips offer higher reliability through the inclusion of automated error recovery mechanisms that can reconfigure operations performed on the electrode array. Recent research has begun to explore security vulnerabilities of digital microfluidic systems. This paper expands previous work that exploits vulnerabilities due to implicit trust in the error recovery mechanism. In this work, a discriminative data mining approach is introduced to identify frequent bioassay operations that can be cyber-physically attested for runtime security protection.more » « less
-
Digital health–enabled community-centered care (D-CCC) represents a pioneering vision for the future of community-centered care. D-CCC aims to support and amplify the digital footprint of community health workers through a novel artificial intelligence–enabled closed-loop digital health platform designed for, and with, community health workers. By focusing digitalization at the level of the community health worker, D-CCC enables more timely, supported, and individualized community health worker–delivered interventions. D-CCC has the potential to move community-centered care into an expanded, digitally interconnected, and collaborative community-centered health and social care ecosystem of the future, grounded within a robust and digitally empowered community health workforce.more » « less
-
Care workers are increasingly using digital technology in their daily lives, for monitoring, financial compensation, training, coordination, and more. State and corporate actors have invested significant resources to enable this digital shift, particularly during the COVID-19 pandemic. However, care work has remained chronically underpaid, and continues to rely on women from minoritized and marginalized backgrounds. Our paper examines how care workers carefully navigate digitization, precarity, and complex social relationships, in an attempt to care for their communities and each other. We analyze the emerging digital ecosystem for frontline health workers in India during the COVID-19 pandemic where these dynamics have been highly visible. Our research draws attention to four interconnected ways in which workers practiced care, by directing their efforts towards survival, resilience, advocacy, and/or resistance. We suggest these also as care orientations that can be adopted by researchers and practitioners, to critically reflect on and direct technology design towards enabling more caring futures, for (and with) workers and communities.more » « less