Artificially designed modulators that enable a wealth of freedom in manipulating the terahertz (THz) waves at will are an essential component in THz sources and their widespread applications. Dynamically controlled metasurfaces, being multifunctional, ultrafast, integrable, broadband, high contrasting, and scalable on the operating wavelength, are critical in developing state-of-the-art THz modulators. Recently, external stimuli-triggered THz metasurfaces integrated with functional media have been extensively explored. The vanadium dioxide (VO2)-based hybrid metasurfaces, as a unique path toward active meta-devices, feature an insulator–metal phase transition under the excitation of heat, electricity, and light, etc. During the phase transition, the optical and electrical properties of the VO2 film undergo a massive modification with either a boosted or dropped conductivity by more than four orders of magnitude. Being benefited from the phase transition effect, the electromagnetic response of the VO2-based metasufaces can be actively controlled by applying external excitation. In this review, we present recent advances in dynamically controlled THz metasurfaces exploiting the VO2 phase transition categorized according to the external stimuli. THz time-domain spectroscopy is introduced as an indispensable platform in the studies of functional VO2 films. In each type of external excitation, four design strategies are employed to realize external stimuli-triggered VO2-based THz metasurfaces, including switching the transreflective operation mode, controlling the dielectric environment of metallic microstructures, tailoring the equivalent resonant microstructures, and modifying the electromagnetic properties of the VO2 unit cells. The microstructures’ design and electromagnetic responses of the resulting active metasurfaces have been systematically demonstrated, with a particular focus on the critical role of the VO2 films in the dynamic modulation processes.
more »
« less
Manipulation of Scattering Spectra with Topology of Light and Matter
Abstract Structured lights, including beams carrying spin and orbital angular momenta, radially and azimuthally polarized vector beams, as well as spatiotemporal optical vortices, have attracted significant interest due to their unique amplitude, phase front, polarization, and temporal structures, enabling a variety of applications in optical and quantum communications, micromanipulation, and super‐resolution imaging. In parallel, structured optical materials, metamaterials, and metasurfaces consisting of engineered unit cells—meta‐atoms, opened new avenues for manipulating the flow of light and optical sensing. While several studies explored structured light effects on the individual meta‐atoms, their shapes are largely limited to simple spherical geometries. However, the synergy of the structured light and complex‐shaped meta‐atoms has not been fully explored. In this paper, the role of the helical wavefront of Laguerre–Gaussian beams in the excitation and suppression of higher‐order resonant modes inside all‐dielectric meta‐atoms of various shapes, aspect ratios, and orientations, is demonstrated and the excitation of various multipolar moments that are not accessible via unstructured light illumination is predicted. The presented study elucidates the role of the complex phase distribution of the incident light in shape‐dependent resonant scattering, which is of utmost importance in a wide spectrum of applications ranging from remote sensing to spectroscopy.
more »
« less
- Award ID(s):
- 2240562
- PAR ID:
- 10538775
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Laser & Photonics Reviews
- Volume:
- 17
- Issue:
- 3
- ISSN:
- 1863-8880
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Vigorous efforts to harness the topological properties of light have enabled a multitude of novel applications. Translating the applications of structured light to higher spatial and temporal resolutions mandates their controlled generation, manipulation, and thorough characterization in the short-wavelength regime. Here, we resort to high-order harmonic generation (HHG) in a noble gas to upconvert near-infrared (IR) vector, vortex, and vector-vortex driving beams that are tailored, respectively, in their spin angular momentum (SAM), orbital angular momentum (OAM), and simultaneously in their SAM and OAM. We show that HHG enables the controlled generation of extreme-ultraviolet (EUV) vector beams exhibiting various spatially dependent polarization distributions, or EUV vortex beams with a highly twisted phase. Moreover, we demonstrate the generation of EUV vector-vortex beams (VVB) bearing combined characteristics of vector and vortex beams. We rely on EUV wavefront sensing to unambiguously affirm the topological charge scaling of the HHG beams with the harmonic order. Interestingly, our work shows that HHG allows for a synchronous controlled manipulation of SAM and OAM. These EUV structured beams bring in the promising scenario of their applications at nanometric spatial and sub-femtosecond temporal resolutions using a table-top harmonic source.more » « less
-
Abstract In the rapidly developing field of nanophotonics, machine learning (ML) methods facilitate the multi‐parameter optimization processes and serve as a valuable technique in tackling inverse design challenges by predicting nanostructure designs that satisfy specific optical property criteria. However, while considerable efforts have been devoted to applying ML for designing the overall spectral response of photonic nanostructures, often without elucidating the underlying physical mechanisms, physics‐based models remain largely unexplored. Here, physics‐empowered forward and inverse ML models to design dielectric meta‐atoms with controlled multipolar responses are introduced. By utilizing the multipole expansion theory, the forward model efficiently predicts the scattering response of meta‐atoms with diverse shapes and the inverse model designs meta‐atoms that possess the desired multipole resonances. Implementing the inverse design model, uniquely shaped meta‐atoms with enhanced higher‐order magnetic resonances and those supporting a super‐scattering regime of light‐matter interactions resulting in nearly five‐fold enhancement of scattering beyond the single‐channel limit are designed. Finally, an ML model to predict the wavelength‐dependent electric field distribution inside and near the meta‐atom is developed. The proposed ML based models will likely facilitate uncovering new regimes of linear and nonlinear light‐matter interaction at the nanoscale as well as a versatile toolkit for nanophotonic design.more » « less
-
Resonant excitation of high-index dielectric nanostructures and their coupling with molecular excitons provide great opportunities for engineering adaptable platforms for hybrid functional optical devices. Here, we numerically calculate resonance coupling of nonradiating anapole states to molecular excitons within silicon nanosphere-J-aggregate heterostructures under illumination with radially polarized cylindrical vector beams. The results show that the resonance coupling is accompanied by a scattering peak around the exciton transition frequency, and the anapole state splits into a pair of anticrossing eigenmodes with a mode splitting energy of ≈200meV. We also investigate the resonance coupling as a function of the J-aggregate parameters, such as thickness, exciton transition linewidth, and oscillator strength. Resonant coupling of the anapole states and J-aggregate heterostructures could be a promising platform for future nanophotonic applications such as in information processing and sensing.more » « less
-
Abstract Sub-wavelength diffractive optics, commonly known as meta-optics, present a complex numerical simulation challenge, due to their multi-scale nature. The behavior of constituent sub-wavelength scatterers, or meta-atoms, needs to be modeled by full-wave electromagnetic simulations, whereas the whole meta-optical system can be modeled using ray/ Fourier optics. Most simulation techniques for large-scale meta-optics rely on the local phase approximation (LPA), where the coupling between dissimilar meta-atoms is neglected. Here we introduce a physics-informed neural network, coupled with the overlapping boundary method, which can efficiently model the meta-optics while still incorporating all of the coupling between meta-atoms. We demonstrate the efficacy of our technique by designing 1mm aperture cylindrical meta-lenses exhibiting higher efficiency than the ones designed under LPA. We experimentally validated the maximum intensity improvement (up to 53%) of the inverse-designed meta-lens. Our reported method can design large aperture ( ~ 104 − 105λ) meta-optics in a reasonable time (approximately 15 minutes on a graphics processing unit) without relying on the LPA.more » « less
An official website of the United States government

