Abstract The recently reported19F‐detected dual‐optimized inverted1JCC1,n‐ADEQUATE experiment and the previously reported1H‐detected version have been modified to incorporateJ‐modulation, making it feasible to acquire all 1,1‐ and 1,n‐ADEQUATE correlations as well as1JCCandnJCChomonuclear scalar couplings in a single experiment. The experiments are demonstrated usingN,N‐dimethylamino‐2,5,6‐trifluoro‐3,4‐phthalonitrile andN,N‐dimethylamino‐3,4‐phthalonitrile.
more »
« less
Group 13 ion coordination to pyridyl models NAD + reduction potentials
N-alkylation andN-metallation of pyridine are explored herein to understand how metal-ligand complexes can model NAD+redox chemistry.
more »
« less
- Award ID(s):
- 2054529
- PAR ID:
- 10538843
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 59
- Issue:
- 59
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 9110 to 9113
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mattoon, C.M.; Vogt, R.; Escher, J.; Thompson, I. (Ed.)The cross-section of the thermal neutron capture41Ar(n,γ)42Ar(t1/2=32.9 y) reaction was measured by irradiating a40Ar sample at the high-flux reactor of Institut Laue-Langevin (ILL) Grenoble, France. The signature of the two-neutron capture has been observed by measuring the growth curve and identifying the 1524.6 keV γ-lines of the shorter-lived42K(12.4 h) β−daughter of42Ar. Our preliminary value of the41Ar(n,γ)42Ar thermal cross section is 240(80) mb at 25.3 meV. For the first time, direct counting of42Ar was performed using the ultra-high sensitivity technique of noble gas accelerator mass spectrometry (NOGAMS) at Argonne National Laboratory, USA.more » « less
-
Abstract Insights into structure‐conductivity mechanisms are investigated for a series of six (dinitrile)2LiPF6 molecular crystals with varied alkyl chain lengths, N≡C─(CH2)n─C≡N, n = 2, 3, 4, 5, 6, and 2Me‐glutaronitrile. The molecular crystals have separate Li+ and channels, with the Li+ions weakly coordinated by four ─C≡N groups. The following correlations are observed: i) shorter Li+⋯ Li+ hopping distances (5.72–8.08 Å) increase ionic conductivity (3.1 × 10−4–0.15 × 10−4 S cm−1 at 25 °C) for all (dinitrile)2LiPF6; ii) when there are unrestricted anion channels, the lithium ion transference number increases ( = 0.39–0.62) as the void volume (565–250 Å3) and Li+⋯ Li+ hopping distance (7.15–5.72 Å) decrease, since a greater fraction of the charge is contributed by the Li+ions; this correlates with n= 2, 4, 5, 6; iii) the exceptions are Gln (n = 3) and 2Me‐Gln, where there are restricted channels for anion migration, and in this case: iv) conductivity decreases (0.57–0.15 × 10−4 S cm−1 at 25 °C), since contributions to the conductivity from anion migration decrease, but v) increases (0.64–0.7) since a greater fraction of the charge is carried by the Li+ ions.more » « less
-
Abstract We introduce the heterocumulene ligand [(Ad)NCC(tBu)]−(Ad=1‐adamantyl (C10H15),tBu=tert‐butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid‐base chemistry, which promotes an unprecedented spin‐state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1‐adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡CtBu(OTf)] (A) (BDI−=ArNC(CH3)CHC(CH3)NAr), Ar=2,6‐iPr2C6H3) and [(dBDI)V≡CtBu(OEt2)] (B) (dBDI2−=ArNC(CH3)CHC(CH2)NAr). ComplexAreacts with C≡NAd, to generate the high‐spin [VIII] complex with a κ1‐N‐ynamide ligand, [(BDI)V{κ1‐N‐(Ad)NCC(tBu)}(OTf)] (1). Conversely,Breacts with C≡NAd to generate a low‐spin [VIII] diamagnetic complex having a chelated κ2‐C,N‐azaalleneyl ligand, [(dBDI)V{κ2‐N,C‐(Ad)NCC(tBu)}] (2). Theoretical studies have been applied to better understand the mechanism of formation of2and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between1and2.more » « less
An official website of the United States government

