Urban streams and rivers have chronic bacteria contamination in the United States, coming from multiple sources, following a variety of flowpaths to the waterway, and with differing downstream fates. Bacteria from human sewage, estimated through measures of Escherichia coli, pose the highest risk to human health. We analyzed four years of E. coli monitoring by community science groups to look for spatial and temporal drivers of E. coli densities in watersheds in the urban core of metro Atlanta, GA, with a wide range of racial and economic diversity as well as persistent patterns of segregation and racialized inequality. These watersheds are spaces of environmental injustice, with disproportionate impacts for lower-wealth and predominantly Black communities from flooding, soil contamination, and air pollution. While there were minimal differences in E. coli between watersheds with different Black and white populations, individual sites could be identified as hot and cold spots of contamination. Storm events increased E. coli at most sites, indicating a combination of runoff and sediment-sorbed E. coli explains about 50% of the temporal variability in E. coli densities. Long-term median E. coli levels were not strongly correlated to land cover or socio-demographic characteristics of the contributing watershed, but E. coli variability was lower in less densely urbanized areas. Temporal and spatial distributions of E. coli are controlled by complex interactions between sources and hydrologic transport that vary across watersheds. While direct correlations to racial demographics were not observed, the interactions between sewage as one environmental harm and the many others (air quality, soil quality, prison-industrial complex, etc.) present in minority and low-income urban communities emphasize the oversized burden environmental justice communities carry.
more »
« less
Environmental Injustice: When the Grass is Greener on the Other Side
Environmental pollution is a global threat that is especially prevalent in heavily industrialized and urbanized areas. Pollution can be found in many forms, such as natural and synthetic pollutants from natural and anthropogenic processes. These impact individual, population, and ecosystem health. Additionally, urbanization and industrialization create landscape heterogeneity, which alters socioecological dynamics within environments—often through intentional and systematic processes. For humans, the subjection to and impacts of both pollution and land distribution have disproportionate effects on members of low-income and marginalized communities. Environmental injustice occurs when systemic biases like racism and classism fuel inequalities and inequities among individuals and their communities. The current activity combines predictive graphing and group discussions to help reinforce basic principles of environmental pollution and the sociocultural underpinnings that increase risks of exposure and impacts, using real-life examples of environmental injustice such as the Flint Water Crisis and Cancer Alley Louisiana. Utilizing the “Mapping for Environmental Justice” website, students will predict the cumulative environmental injustice burden across the State of Virginia, resulting from imbalanced land distribution, and compare public health data to examine those to be considered “at risk” based on various demographic characteristics. Students will then think critically and discuss the decision-making behind societal pollution and land management, which influence the presence and intensity of environmental injustices.
more »
« less
- Award ID(s):
- 2120934
- PAR ID:
- 10538871
- Editor(s):
- Flowers, Sharleen
- Publisher / Repository:
- Quebes
- Date Published:
- Journal Name:
- CourseSource
- Volume:
- 11
- ISSN:
- 2332-6530
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
U.S. coastal economies and communities are facing an unprecedented and growing number of impacts to coastal ecosystems including beach and fishery closures, harmful algal blooms, loss of critical habitat, as well as shoreline damage. This paper synthesizes our present understanding of the dynamics of human and ecosystem health in coastal systems with a focus on the need to better understand nearshore physical process interactions with coastal pollutants and ecosystems (e.g. fate and transport, circulation, depositional environment, climate change). It is organized around two major topical areas and six subtopic areas: 1) Identifying and mitigating coastal pollutants, including fecal pollution, nutrients and harmful algal blooms, and microplastics; and 2) Resilient coastal ecosystems, which focuses on coastal fisheries, shellfish and natural and nature-based features (NNBF). Societal needs and the tools and technologies needed to address them are discussed for each subtopic. Recommendations for scientific research, observations, community engagement, and policies aim to help prioritize future research and investments. A better understanding of coastal physical processes and interactions with coastal pollutants and resilient ecosystems (e.g. fate and transport, circulation, depositional environment, climate change) is a critical need. Other research recommendations include the need to quantify potential threats to human and ecosystem health through accurate risk assessments and to quantify the resulting hazard risk reduction of natural and nature-based features; improve pollutant and ecosystem impacts forecasting by integrating frequent and new data points into existing and novel models; collect environmental data to calibrate and validate models to predict future impacts on coastal ecosystems and their evolution due to anthropogenic stressors (land-based pollution, overfishing, coastal development), climate change, and sea level rise; and develop lower cost and rapid response tools to help coastal managers better respond to pollutant and ecosystem threats.more » « less
-
Civic-science integrates science knowledge with civic practice but differs from the citizen-science prototype by reframing science as a public good and citizens as both recipients of and actors in policy. We draw from our studies of a civic-science model in which adolescents (majority African-American) collaborate with teachers and community partners to mitigate an environmental problem in their urban community. Based on students’ reflections on what they learn from these projects we have developed Environmental Commons theory, referring both to the natural resources on which life depends and the public spaces where people negotiate how they will care for those resources and for the communities they inhabit. We contend that, to solve twentyfirst century environmental and climate challenges, it is myopic to rely on elite groups of scientific experts and policymakers. Instead, a civic science skill set should be part of the preparation of younger generations to be informed citizens and youth from urban ethnic minority communities should be a high priority. From an eco-justice standpoint, these groups bear a disproportionate share of the burdens of environmental pollution and climate change yet historically have been marginalized by the institution of science and, until recently, relatively neglected by environmental movements.more » « less
-
Abstract Purpose of Review Environmental epidemiology has long considered socioeconomic position (SEP) to be an important confounder of pollution effects on health, given that, in the USA, lower-income and minority communities are often disproportionately exposed to pollution. In recent decades, a growing literature has revealed that lower-SEP communities may also be more susceptible to pollution. Given the vast number of material and psychosocial stressors that vary by SEP, however, it is unclear which specific aspects of SEP may underlie this susceptibility. As environmental epidemiology engages more rigorously with issues of differential susceptibility, it is pertinent to define SEP more clearly, to disentangle its many aspects, and to move towards identifying causal components. Myriad stressors and exposures vary with SEP, with effects accumulating and interacting over the lifecourse. Here, we ask: In the context of environmental epidemiology, how do we meaningfully characterize”SEP”? Recent Findings In answering this question, it is critical to acknowledge that SEP, stressors, and pollution are differentially distributed by race in US cities. These distributions have been shaped by neighborhood sorting and race-based residential segregation rooted in historical policies and processes (e.g., redlining), which have served to concentrate wealth and opportunities for education and employment in predominantly-white communities. As a result, it is now profoundly challenging to separate SEP from race in the urban US setting. Summary Here, we cohere evidence from our recent and on-going studies aimed at disentangling synergistic health effects among SEP-related stressors and pollutants. We consider an array of SEP-linked social stressors, and discuss persistent challenges in this epidemiology, many of which are related to spatial confounding among multiple pollutants and stressors. Combining quantitative results with insights from qualitative data on neighborhood perceptions and stress (including violence and police-community relations), we offer a lens towards unpacking the complex interplay among SEP, community stressors, race, and pollution in US cities.more » « less
-
Abstract Scaling up electric vehicles (EVs) provides an avenue to mitigate both carbon emissions and air pollution from road transport. The benefits of EV adoption for climate, air quality, and health have been widely documented. Yet, evidence on the distribution of these impacts has not been systematically reviewed, despite its central importance to ensure a just and equitable transition. Here, we perform a systematic review of recent EV studies that have examined the spatial distribution of the emissions, air pollution, and health impacts, as an important aspect of the equity implications. Using the Context-Interventions-Mechanisms-Outcome framework with a two-step search strategy, we narrowed down to 47 papers that met our inclusion criteria for detailed review and synthesis. We identified two key factors that have been found to influence spatial distributions. First, the cross-sectoral linkages may result in unintended impacts elsewhere. For instance, the generation of electricity to charge EVs, and the production of batteries and other materials to manufacture EVs could increase the emissions and pollution in locations other than where EVs are adopted. Second, since air pollution and health are local issues, additional location-specific factors may play a role in determining the spatial distribution, such as the wind transport of pollution, and the size and vulnerability of the exposed populations. Based on our synthesis of existing evidence, we highlight two important areas for further research: (1) fine-scale pollution and health impact assessment to better characterize exposure and health disparities across regions and population groups; and (2) a systematic representation of the EV value chain that captures the linkages between the transport, power and manufacturing sectors as well as the regionally-varying activities and impacts.more » « less
An official website of the United States government

