skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A spectroscopic investigation of the lowest electronic states of the I2+ cation as a candidate for detecting the time variation of fundamental constants
The four lowest Ω substates (X2Π3/2,g, X2Π1/2,g, A2Π3/2,u and A2Π1/2,u) of the cation have been studied by high-precision ab initio calculations in comparison with experimental high-resolution absorption spectra. The potential energy curves were calculated using the multi-reference configuration interaction (MRCI) method and Dirac method, respectively. Rovibrational levels of these electronic states were derived by solving the radial Schrödinger rovibrational equation. Molecular constants were obtained in fitting energy levels to a spectroscopic model. Using the fit spectroscopic constants and newly calculated transition dipole moment matrix elements, line strengths of vibronic bands in the A2Π3/2,u- X2Π3/2,g system, as well as Einstein A coefficients for 45 of these bands with ν′ = 11–19 and ν′′ = 1–5, have been derived. The Einstein A coefficients were used to compute radiative lifetimes of the ν′ = 11–19 vibrational levels of the A2Π3/2,u state. Enhancement factors for detecting the variation of the fine-structure constant (α) and the proton-to-electron mass ratio(µ) using transitions between nearly degenerate rovibronic levels of these low-lying states have been calculated.  more » « less
Award ID(s):
1454825
PAR ID:
10538973
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Molecular Spectroscopy
Volume:
399
Issue:
C
ISSN:
0022-2852
Page Range / eLocation ID:
111873
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.The methyl cation (CH3+) has recently been discovered in the interstellar medium through the detection of 7 μm (1400 cm−1) features toward the d203-506 protoplanetary disk by the JWST. Line-by-line spectroscopic assignments of these features, however, were unsuccessful due to complex intramolecular perturbations preventing a determination of the excitation and abundance of the species in that source. Aims.Comprehensive rovibrational assignments guided by theoretical and experimental laboratory techniques provide insight into the excitation mechanisms and chemistry of CH3+in d203-506. Methods.The rovibrational structure of CH3+was studied theoretically by a combination of coupled-cluster electronic structure theory and (quasi-)variational nuclear motion calculations. Two experimental techniques were used to confirm the rovibrational structure of CH3+:(1) infrared leak-out spectroscopy of the methyl cation, and (2) rotationally resolved photoelectron spectroscopy of the methyl radical (CH3). In (1), CH3+ions, produced by the electron impact dissociative ionization of methane, were injected into a 22-pole ion trap where they were probed by the pulses of infrared radiation from the FELIX free electron laser. In (2), neutral CH3, produced by CH3NO2pyrolysis in a molecular beam, was probed by pulsed-field ionization zero-kinetic-energy photoelectron spectroscopy. Results.The quantum chemical calculations performed in this study have enabled a comprehensive spectroscopic assignment of thev2+andv4+bands of CH3+detected by the JWST. The resulting spectroscopic constants and derived EinsteinAcoefficients fully reproduce both the infrared and photoelectron spectra and permit the rotational temperature of CH3+(T= 660 ± 80 K) in d203-506 to be derived. A beam-averaged column density of CH3+in this protoplanetary disk is also estimated. 
    more » « less
  2. Double- and single-differential cross sections for inclusive charged-current ν μ -nucleus scattering are reported for the kinematic domain 0 to 2 GeV / c in three-momentum transfer and 0 to 2 GeV in available energy, at a mean ν μ energy of 1.86 GeV. The measurements are based on an estimated 995,760 ν μ charged-current (CC) interactions in the scintillator medium of the NOvA Near Detector. The subdomain populated by 2-particle-2-hole (2p2h) reactions is identified by the cross section excess relative to predictions for ν μ -nucleus scattering that are constrained by a data control sample. Models for 2-particle-2-hole processes are rated by χ 2 comparisons of the predicted-versus-measured ν μ CC inclusive cross section over the full phase space and in the restricted subdomain. Shortfalls are observed in neutrino generator predictions obtained using the theory-based València and SuSAv2 2p2h models. Published by the American Physical Society2025 
    more » « less
  3. We report measurements of the absolute energies of the hyperfine components of the $$12s \ ^2S_{1/2}$$ and $$13s \ ^2S_{1/2}$$ levels of atomic cesium, $$^{133}$$Cs. Using the frequency difference between these components, we determine the hyperfine coupling constants for these states, and report these values with a relative uncertainty of $$\sim$$0.06\%. We also examine the hyperfine structure of the $$11d \ ^2D_{J}$$ ($J=3/2, 5/2$) states, and resolve the sign ambiguity of the hyperfine coupling constants from previous measurements of these states. We also derive new, high precision values for the state energies of the $$12s \ ^2S_{1/2}$$, $$13s \ ^2S_{1/2}$$ and $$11d \ ^2D_{J}$$ states of cesium. 
    more » « less
  4. A measurement of the ratio of branching fractions R ( J / ψ ) = B ( B c + J / ψ τ + ν τ ) / B ( B c + J / ψ μ + ν μ ) in the J / ψ μ + μ , τ + μ + ν μ ν ¯ τ decay channel is presented. This measurement uses a sample of proton-proton collision data collected at a center-of-mass energy of 13 TeV by the CMS experiment in 2018, corresponding to an integrated luminosity of 59.7 fb 1 . The measured ratio, R ( J / ψ ) = 0.1 7 0.17 + 0.18 ( stat ) 0.22 + 0.21 ( syst ) 0.18 + 0.19 ( theo ) = 0.17 ± 0.33 , agrees with the value of 0.2582 ± 0.0038 predicted by the standard model, which assumes lepton flavor universality. By testing lepton flavor universality, this measurement is a probe of new physics using B c + mesons, which are currently only produced at the LHC. 
    more » « less
  5. The production yields of the orbitally excited charm-strange mesons D s 1 ( 1 + ) ( 2536 ) + and D s 2 * ( 2 + ) ( 2573 ) + were measured for the first time in proton-proton (pp) collisions at a center-of-mass energy of s = 13 TeV with the ALICE experiment at the LHC. The D s 1 + and D s 2 * + mesons were measured at midrapidity ( | y | < 0.5 ) in minimum-bias and high-multiplicity pp collisions in the transverse-momentum interval 2 < p T < 24 GeV / c . Their production yields relative to the D s + ground-state yield were found to be compatible between minimum-bias and high-multiplicity collisions, as well as with previous measurements in e ± p and e + e collisions. The measured D s 1 + / D s + and D s 2 * + / D s + yield ratios are described by statistical hadronization models and can be used to tune the parameters governing the production of excited charm-strange hadrons in Monte Carlo generators, such as 8. 
    more » « less