skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fixed-flux Rayleigh–Bénard convection in doubly periodic domains: generation of large-scale shear
This work studies two-dimensional fixed-flux Rayleigh–Bénard convection with periodic boundary conditions in both horizontal and vertical directions and analyses its dynamics using numerical continuation, secondary instability analysis and direct numerical simulation. The fixed-flux constraint leads to time-independent elevator modes with a well-defined amplitude. Secondary instability of these modes leads to tilted elevator modes accompanied by horizontal shear flow. For$$Pr=1$$, where$$Pr$$is the Prandtl number, a subsequent subcritical Hopf bifurcation leads to hysteresis behaviour between this state and a time-dependent direction-reversing state, followed by a global bifurcation leading to modulated travelling waves without flow reversal. Single-mode equations reproduce this moderate Rayleigh number behaviour well. At high Rayleigh numbers, chaotic behaviour dominated by modulated travelling waves appears. These transitions are characteristic of high wavenumber elevator modes since the vertical wavenumber of the secondary instability is linearly proportional to the horizontal wavenumber of the elevator mode. At a low$$Pr$$, relaxation oscillations between the conduction state and the elevator mode appear, followed by quasi-periodic and chaotic behaviour as the Rayleigh number increases. In the high$$Pr$$regime, the large-scale shear weakens, and the flow shows bursting behaviour that can lead to significantly increased heat transport or even intermittent stable stratification.  more » « less
Award ID(s):
2023499 2023541
PAR ID:
10539003
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
979
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We explored the settling dynamics of vertically aligned particles in a quiescent, stratified two-layer fluid using particle tracking velocimetry. Glass spheres of$$d=4\,{\rm mm}$$diameter were released at frequencies of 4, 6 and 8 Hz near the free surface, traversing through an upper ethanol layer ($$H_1$$), whereHis height or layer thickess, varying from$$10d$$to$$40d$$and a lower oil layer. Results reveal pronounced lateral particle motion in the ethanol layer, attributed to a higher Galileo number ($$Ga = 976$$, ratio of buoyancy–gravity to viscous effects), compared with the less active behaviour in the oil layer ($$Ga = 16$$). The ensemble vertical velocity of particles exhibited a minimum just past the density interface, becoming more pronounced with increasing$$H_1$$, and suggesting that enhanced entrainment from ethanol to oil resulted in an additional buoyancy force. This produced distinct patterns of particle acceleration near the density interface, which were marked by significant deceleration, indicating substantial resistance to particle motion. An increased drag coefficient occurred for$$H_1/d = 40$$compared with a single particle settling in oil; drag reduced as the particle-release frequency ($$\,f_p$$) increased, likely due to enhanced particle interactions at closer proximity. Particle pair dispersions, lateral ($$R^2_L$$) and vertical ($$R^2_z$$), were modulated by$$H_1$$, initial separation$$r_0$$and$$f_p$$. The$$R^2_L$$dispersion displayed ballistic scaling initially, Taylor scaling for$$r_0 < H_1$$and Richardson scaling for$$r_0 > H_1$$. In contrast,$$R^2_z$$followed a$$R^2_z \sim t^{5.5}$$scaling under$$r_0 < H_1$$. Both$$R^2_L$$and$$R^2_z$$plateaued at a distance from the interface, depending on$$H_1$$and$$f_p$$. 
    more » « less
  2. Large-eddy simulation was used to model turbulent atmospheric surface layer (ASL) flow over canopies composed of streamwise-aligned rows of synthetic trees of height,$$h$$, and systematically arranged to quantify the response to variable streamwise spacing,$$\delta _1$$, and spanwise spacing,$$\delta _2$$, between adjacent trees. The response to spanwise and streamwise heterogeneity has, indeed, been the topic of a sustained research effort: the former resulting in formation of Reynolds-averaged counter-rotating secondary cells, the latter associated with the$$k$$- and$$d$$-type response. No study has addressed the confluence of both, and results herein show secondary flow polarity reversal across ‘critical’ values of$$\delta _1$$and$$\delta _2$$. For$$\delta _2/\delta \lesssim 1$$and$$\gtrsim 2$$, where$$\delta$$is the flow depth, the counter-rotating secondary cells are aligned such that upwelling and downwelling, respectively, occurs above the elements. The streamwise spacing$$\delta _1$$regulates this transition, with secondary cell reversal occurring first for the largest$$k$$-type cases, as elevated turbulence production within the canopy necessitates entrainment of fluid from aloft. The results are interpreted through the lens of a benchmark prognostic closure for effective aerodynamic roughness,$$z_{0,{Eff.}} = \alpha \sigma _h$$, where$$\alpha$$is a proportionality constant and$$\sigma _h$$is height root mean square. We report$$\alpha \approx 10^{-1}$$, the value reported over many decades for a broad range of rough surfaces, for$$k$$-type cases at small$$\delta _2$$, whereas the transition to$$d$$-type arrangements necessitates larger$$\delta _2$$. Though preliminary, results highlight the non-trivial response to variation of streamwise and spanwise spacing. 
    more » « less
  3. This study explores heat and turbulent modulation in three-dimensional multiphase Rayleigh–Bénard convection using direct numerical simulations. Two immiscible fluids with identical reference density undergo systematic variations in dispersed-phase volume fractions,$$0.0 \leq \varPhi \leq 0.5$$, and ratios of dynamic viscosity,$$\lambda _{\mu }$$, and thermal diffusivity,$$\lambda _{\alpha }$$, within the range$$[0.1\unicode{x2013}10]$$. The Rayleigh, Prandtl, Weber and Froude numbers are held constant at$$10^8$$,$$4$$,$$6000$$and$$1$$, respectively. Initially, when both fluids share the same properties, a 10 % Nusselt number increase is observed at the highest volume fractions. In this case, despite a reduction in turbulent kinetic energy, droplets enhance energy transfer to smaller scales, smaller than those of single-phase flow, promoting local mixing. By varying viscosity ratios, while maintaining a constant Rayleigh number based on the average mixture properties, the global heat transfer rises by approximately 25 % at$$\varPhi =0.2$$and$$\lambda _{\mu }=10$$. This is attributed to increased small-scale mixing and turbulence in the less viscous carrier phase. In addition, a dispersed phase with higher thermal diffusivity results in a 50 % reduction in the Nusselt number compared with the single-phase counterpart, owing to faster heat conduction and reduced droplet presence near walls. The study also addresses droplet-size distributions, confirming two distinct ranges dominated by coalescence and breakup with different scaling laws. 
    more » « less
  4. Geophysical and astrophysical fluid flows are typically driven by buoyancy and strongly constrained at large scales by planetary rotation. Rapidly rotating Rayleigh–Bénard convection (RRRBC) provides a paradigm for experiments and direct numerical simulations (DNS) of such flows, but the accessible parameter space remains restricted to moderately fast rotation rates (Ekman numbers$${ {Ek}} \gtrsim 10^{-8}$$), while realistic$${Ek}$$for geo- and astrophysical applications are orders of magnitude smaller. On the other hand, previously derived reduced equations of motion describing the leading-order behaviour in the limit of very rapid rotation ($$ {Ek}\to 0$$) cannot capture finite rotation effects, and the physically most relevant part of parameter space with small but finite$${Ek}$$has remained elusive. Here, we employ the rescaled rapidly rotating incompressible Navier–Stokes equations (RRRiNSE) – a reformulation of the Navier–Stokes–Boussinesq equations informed by the scalings valid for$${Ek}\to 0$$, recently introduced by Julienet al.(2024) – to provide full DNS of RRRBC at unprecedented rotation strengths down to$$ {Ek}=10^{-15}$$and below, revealing the disappearance of cyclone–anticyclone asymmetry at previously unattainable Ekman numbers ($${Ek}\approx 10^{-9}$$). We also identify an overshoot in the heat transport as$${Ek}$$is varied at fixed$$\widetilde { {Ra}} \equiv {Ra}{Ek}^{4/3}$$, where$$Ra$$is the Rayleigh number, associated with dissipation due to ageostrophic motions in the boundary layers. The simulations validate theoretical predictions based on thermal boundary layer theory for RRRBC and show that the solutions of RRRiNSE agree with the reduced equations at very small$${Ek}$$. These results represent a first foray into the vast, largely unexplored parameter space of very rapidly rotating convection rendered accessible by RRRiNSE. 
    more » « less
  5. Electrophoresis is the motion of a charged colloidal particle in an electrolyte under an applied electric field. The electrophoretic velocity of a spherical particle depends on the dimensionless electric field strength$$\beta =a^*e^*E_\infty ^*/k_B^*T^*$$, defined as the ratio of the product of the applied electric field magnitude$$E_\infty ^*$$and particle radius$$a^*$$, to the thermal voltage$$k_B^*T^*/e^*$$, where$$k_B^*$$is Boltzmann's constant,$$T^*$$is the absolute temperature, and$$e^*$$is the charge on a proton. In this paper, we develop a spectral element algorithm to compute the electrophoretic velocity of a spherical, rigid, dielectric particle, of fixed dimensionless surface charge density$$\sigma$$over a wide range of$$\beta$$. Here,$$\sigma =(e^*a^*/\epsilon ^*k_B^*T^*)\sigma ^*$$, where$$\sigma ^*$$is the dimensional surface charge density, and$$\epsilon ^*$$is the permittivity of the electrolyte. For moderately charged particles ($$\sigma ={O}(1)$$), the electrophoretic velocity is linear in$$\beta$$when$$\beta \ll 1$$, and its dependence on the ratio of the Debye length ($$1/\kappa ^*$$) to particle radius (denoted by$$\delta =1/(\kappa ^*a^*)$$) agrees with Henry's formula. As$$\beta$$increases, the nonlinear contribution to the electrophoretic velocity becomes prominent, and the onset of this behaviour is$$\delta$$-dependent. For$$\beta \gg 1$$, the electrophoretic velocity again becomes linear in field strength, approaching the Hückel limit of electrophoresis in a dielectric medium, for all$$\delta$$. For highly charged particles ($$\sigma \gg 1$$) in the thin-Debye-layer limit ($$\delta \ll 1$$), our computations are in good agreement with recent experimental and asymptotic results. 
    more » « less