Large-eddy simulation was used to model turbulent atmospheric surface layer (ASL) flow over canopies composed of streamwise-aligned rows of synthetic trees of height,$$h$$, and systematically arranged to quantify the response to variable streamwise spacing,$$\delta _1$$, and spanwise spacing,$$\delta _2$$, between adjacent trees. The response to spanwise and streamwise heterogeneity has, indeed, been the topic of a sustained research effort: the former resulting in formation of Reynolds-averaged counter-rotating secondary cells, the latter associated with the$$k$$- and$$d$$-type response. No study has addressed the confluence of both, and results herein show secondary flow polarity reversal across ‘critical’ values of$$\delta _1$$and$$\delta _2$$. For$$\delta _2/\delta \lesssim 1$$and$$\gtrsim 2$$, where$$\delta$$is the flow depth, the counter-rotating secondary cells are aligned such that upwelling and downwelling, respectively, occurs above the elements. The streamwise spacing$$\delta _1$$regulates this transition, with secondary cell reversal occurring first for the largest$$k$$-type cases, as elevated turbulence production within the canopy necessitates entrainment of fluid from aloft. The results are interpreted through the lens of a benchmark prognostic closure for effective aerodynamic roughness,$$z_{0,{Eff.}} = \alpha \sigma _h$$, where$$\alpha$$is a proportionality constant and$$\sigma _h$$is height root mean square. We report$$\alpha \approx 10^{-1}$$, the value reported over many decades for a broad range of rough surfaces, for$$k$$-type cases at small$$\delta _2$$, whereas the transition to$$d$$-type arrangements necessitates larger$$\delta _2$$. Though preliminary, results highlight the non-trivial response to variation of streamwise and spanwise spacing.
more »
« less
Fixed-flux Rayleigh–Bénard convection in doubly periodic domains: generation of large-scale shear
This work studies two-dimensional fixed-flux Rayleigh–Bénard convection with periodic boundary conditions in both horizontal and vertical directions and analyses its dynamics using numerical continuation, secondary instability analysis and direct numerical simulation. The fixed-flux constraint leads to time-independent elevator modes with a well-defined amplitude. Secondary instability of these modes leads to tilted elevator modes accompanied by horizontal shear flow. For$$Pr=1$$, where$$Pr$$is the Prandtl number, a subsequent subcritical Hopf bifurcation leads to hysteresis behaviour between this state and a time-dependent direction-reversing state, followed by a global bifurcation leading to modulated travelling waves without flow reversal. Single-mode equations reproduce this moderate Rayleigh number behaviour well. At high Rayleigh numbers, chaotic behaviour dominated by modulated travelling waves appears. These transitions are characteristic of high wavenumber elevator modes since the vertical wavenumber of the secondary instability is linearly proportional to the horizontal wavenumber of the elevator mode. At a low$$Pr$$, relaxation oscillations between the conduction state and the elevator mode appear, followed by quasi-periodic and chaotic behaviour as the Rayleigh number increases. In the high$$Pr$$regime, the large-scale shear weakens, and the flow shows bursting behaviour that can lead to significantly increased heat transport or even intermittent stable stratification.
more »
« less
- PAR ID:
- 10539003
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 979
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study explores heat and turbulent modulation in three-dimensional multiphase Rayleigh–Bénard convection using direct numerical simulations. Two immiscible fluids with identical reference density undergo systematic variations in dispersed-phase volume fractions,$$0.0 \leq \varPhi \leq 0.5$$, and ratios of dynamic viscosity,$$\lambda _{\mu }$$, and thermal diffusivity,$$\lambda _{\alpha }$$, within the range$$[0.1\unicode{x2013}10]$$. The Rayleigh, Prandtl, Weber and Froude numbers are held constant at$$10^8$$,$$4$$,$$6000$$and$$1$$, respectively. Initially, when both fluids share the same properties, a 10 % Nusselt number increase is observed at the highest volume fractions. In this case, despite a reduction in turbulent kinetic energy, droplets enhance energy transfer to smaller scales, smaller than those of single-phase flow, promoting local mixing. By varying viscosity ratios, while maintaining a constant Rayleigh number based on the average mixture properties, the global heat transfer rises by approximately 25 % at$$\varPhi =0.2$$and$$\lambda _{\mu }=10$$. This is attributed to increased small-scale mixing and turbulence in the less viscous carrier phase. In addition, a dispersed phase with higher thermal diffusivity results in a 50 % reduction in the Nusselt number compared with the single-phase counterpart, owing to faster heat conduction and reduced droplet presence near walls. The study also addresses droplet-size distributions, confirming two distinct ranges dominated by coalescence and breakup with different scaling laws.more » « less
-
Geophysical and astrophysical fluid flows are typically driven by buoyancy and strongly constrained at large scales by planetary rotation. Rapidly rotating Rayleigh–Bénard convection (RRRBC) provides a paradigm for experiments and direct numerical simulations (DNS) of such flows, but the accessible parameter space remains restricted to moderately fast rotation rates (Ekman numbers$${ {Ek}} \gtrsim 10^{-8}$$), while realistic$${Ek}$$for geo- and astrophysical applications are orders of magnitude smaller. On the other hand, previously derived reduced equations of motion describing the leading-order behaviour in the limit of very rapid rotation ($$ {Ek}\to 0$$) cannot capture finite rotation effects, and the physically most relevant part of parameter space with small but finite$${Ek}$$has remained elusive. Here, we employ the rescaled rapidly rotating incompressible Navier–Stokes equations (RRRiNSE) – a reformulation of the Navier–Stokes–Boussinesq equations informed by the scalings valid for$${Ek}\to 0$$, recently introduced by Julienet al.(2024) – to provide full DNS of RRRBC at unprecedented rotation strengths down to$$ {Ek}=10^{-15}$$and below, revealing the disappearance of cyclone–anticyclone asymmetry at previously unattainable Ekman numbers ($${Ek}\approx 10^{-9}$$). We also identify an overshoot in the heat transport as$${Ek}$$is varied at fixed$$\widetilde { {Ra}} \equiv {Ra}{Ek}^{4/3}$$, where$$Ra$$is the Rayleigh number, associated with dissipation due to ageostrophic motions in the boundary layers. The simulations validate theoretical predictions based on thermal boundary layer theory for RRRBC and show that the solutions of RRRiNSE agree with the reduced equations at very small$${Ek}$$. These results represent a first foray into the vast, largely unexplored parameter space of very rapidly rotating convection rendered accessible by RRRiNSE.more » « less
-
The wake flow past an axisymmetric body of revolution at a diameter-based Reynolds number$$Re=u_{\infty }D/\nu =5000$$is investigated via a direct numerical simulation. The study is focused on identification of coherent vortical motions and the dominant frequencies in this flow. Three dominant coherent motions are identified in the wake: the vortex shedding motion with the frequency of$$St=fD/u_{\infty }=0.27$$, the bubble pumping motion with$$St=0.02$$, and the very-low-frequency (VLF) motion originated in the very near wake of the body with the frequency$$St=0.002$$–$$0.005$$. The vortex shedding pattern is demonstrated to follow a reflectional symmetry breaking mode, whereas the vortex loops are shed alternatingly from each side of the vortex shedding plane, but are subsequently twisted and tangled, giving the resulting wake structure a helical spiraling pattern. The bubble pumping motion is confined to the recirculation region and is a result of a Görtler instability. The VLF motion is related to a stochastic destabilisation of a steady symmetric mode in the near wake and manifests itself as a slow, precessional motion of the wake barycentre. The VLF mode with$$St=0.005$$is also detectable in the intermediate wake and may be associated with a low-frequency radial flapping of the shear layer.more » « less
-
We investigate the effects of fluid elasticity on the flow forces and the wake structure when a rigid cylinder is placed in a viscoelastic flow and is forced to oscillate sinusoidally in the transverse direction. We consider a two-dimensional, uniform, incompressible flow of viscoelastic fluid at$$Re=100$$, and use the FENE-P model to represent the viscoelastic fluid. We study how the flow forces and the wake patterns change as the amplitude of oscillations,$$A^*$$, the frequency of oscillations (inversely proportional to a reduced velocity,$$U^*$$), the Weissenberg number,$$Wi$$, the square of maximum polymer extensibility,$$L^2$$, and the viscosity ratio,$$\beta$$, change individually. We calculate the lift coefficient in phase with cylinder velocity to determine the range of different system parameters where self-excited oscillations might occur if the cylinder is allowed to oscillate freely. We also study the effect of fluid elasticity on the added mass coefficient as these parameters change. The maximum elastic stress of the fluid occurs in between the vortices that are observed in the wake. We observe a new mode of shedding in the wake of the cylinder: in addition to the primary vortices that are also observed in the Newtonian flows, secondary vortices that are caused entirely by the viscoelasticity of the fluid are observed in between the primary vortices. We also show that, for a constant$$Wi$$, the strength of the polymeric stresses increases with increasing reduced velocity or with decreasing amplitude of oscillations.more » « less
An official website of the United States government

