skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polymer nanocomposite for protecting photovoltaic cells from solar ultraviolet in space
Abstract Polymer nanocomposite coatings of solar photovoltaic cells that absorb solar ultraviolet (UV) radiation and convert it into visible and near-infrared (NIR) light can increase the operational lifetime and the energy efficiency of the cells. We report a polymer nanocomposite spectrum converting layer (SCL) made of colorless polyimide CORIN impregnated with the nanoparticles (NPs) of fluoride NaYF4doped with three-valent ions of Europium at a molar concentration of 60%. The NPs were the nanocrystals (179 ± 35 nm in size) in thermally stable hexagonal beta-phase. The visible-NIR photoluminescence quantum yield of the nano-powder was ∼69%. The SCLs were applied using the open-air multi-beam multi-target pulsed laser deposition method to silicon heterojunction (SHJ), copper-indium-gallium-selenide (CIGS), and inverted metamorphic multijunction (IMM) solar cells. The cells were exposed to UV radiation from a 365 nm light emitting diode. TheI–Vcharacteristics of the cells were measured with a solar simulator using AM0 filter. The proposed SCLs improved the UV stability of all three types of the cells: the power degradation of SHJs and IMMs cells was stopped or slightly reversed and the degradation rate of CIGSs decreased by ∼25%. The proposed SCLs have great commercial potential, especially for applications to space power.  more » « less
Award ID(s):
2200426
PAR ID:
10592448
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nanotechnology Reviews 2024
Date Published:
Journal Name:
Nanotechnology Reviews
Volume:
13
Issue:
1
ISSN:
2191-9097
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ultraviolet (UV), visible, and near‐infrared (NIR) broadband organic photodetectors are fabricated by sequential solution‐based thin film coatings of a polymer electron blocking layer (EBL) and a polymer photoactive layer. To avoid damage to a preceding polymer EBL during a subsequent solution‐based film coating of a polymer photoactive layer due to lack of solvent orthogonality, 2‐(((4‐azido‐2,3,5,6‐tetrafluorobenzoyl)oxy)methyl)−2‐ethylpropane‐1,3‐diyl bis(4‐azido‐2,3,5,6‐tetrafluorobenzoate) (FPA‐3F) is used as a novel organic cross‐linking agent activated by UV irradiation with a wavelength of 254 nm. Solution‐processed poly[N,N′‐bis(4‐butylphenyl)‐N,N′‐bis(phenyl)‐benzidine] (poly‐TPD) films, which are cross‐linked with a FPA‐3F photocrosslinker, are used for a preceding polymer EBL. A ternary blend film composed of PTB7‐Th, COi8DFIC, and PC71BM is used as a NIR‐sensitive organic photoactive layer with strong photosensitivity in multispectral (UV–visible–NIR) wavelengths of 300–1,050 nm. Poly‐TPD films are successfully cross‐linked even with a very small amount of 1 wt% FPA‐3F. Small amounts of FPA‐3F have little detrimental effect on the electrical and optoelectronic properties of the cross‐linked poly‐TPD EBL. Finally, organic NIR photodetectors with a poly‐TPD EBL cross‐linked by the small addition of FPA‐3F (1 wt%) show the detectivity values higher than 1 × 1012Jones for the entire UV–visible–NIR wavelengths from 300 nm to 1050 nm, and the maximum detectivity values of 1.41 × 1013Jones and 8.90 × 1012Jones at the NIR wavelengths of 900 and 1000 nm, respectively. 
    more » « less
  2. Abstract Incorporation of metallic nanoparticles (NPs) in polymer matrix has been used to enhance and control dissolution and release of drugs, for targeted drug delivery, as antimicrobial agents, localized heat sources, and for unique optoelectronic applications. Gold NPs in particular exhibit a plasmonic response that has been utilized for photothermal energy conversion. Because plasmonic nanoparticles typically exhibit a plasmon resonance frequency similar to the visible light spectrum, they present as good candidates for direct photothermal conversion with enhanced solar thermal efficiency in these wavelengths. In our work, we have incorporated ∼3-nm-diameter colloidal gold (Au c ) NPs into electrospun polyethylene glycol (PEG) fibers to utilize the nanoparticle plasmonic response for localized heating and melting of the polymer to release medical treatment. Au c and Au c in PEG (PEG+Au c ) both exhibited a minimum reflectivity at 522 nm or approximately green wavelengths of light under ultraviolet-visible (UV-Vis) spectroscopy. PEG+Au c ES fibers revealed a blue shift in minimum reflectivity at 504 nm. UV-Vis spectra were used to calculate the theoretical efficiency enhancement of PEG+Au c versus PEG alone, finding an approximate increase of 10 % under broad spectrum white light interrogation, and ∼14 % when illuminated with green light. Au c enhanced polymers were ES directly onto resistance temperature detectors and interrogated with green laser light so that temperature change could be recorded. Results showed a maximum increase of 8.9 °C. To further understand how gold nanomaterials effect the complex optical properties of our materials, spectroscopic ellipsometry was used. Using spectroscopic ellipsometry and modeling with CompleteEASE® software, the complex optical constants of our materials were determined. The complex optical constant n (index of refraction) provided us with optical density properties related to light wavelength divided by velocity, and k (extinction coefficient) was used to show the absorptive properties of the materials. 
    more » « less
  3. Shibin, J; Michel, D (Ed.)
    There is ever growing interest in sensitive detection of short wavelength (SWL) radiation, ultraviolet (UV) and X-rays. We report on our efforts to develop sensitive SWL detectors based on the nanoparticles (NPs) of lanthanide (Ln) doped Cs-Pb-bromide perovskite and oxysulfides that down-convert the spectrum of SWL radiation into visible and near-infrared (NIR) light. The spectrum of this light matches the spectral response of inexpensive and rugged silicon avalanche photo diodes (APDs) and image sensors with an electron gain of >106. Synthesized Eu-doped perovskite NPs demonstrated a down-shifted visible-NIR photoluminescence (PL) response to UV radiation with the spectral peaks attributed to both perovskite matrix and Eu dopant. A scintillating screen made of red nanophosphor Gd2O2S: Eu was used for X-ray see-through imaging of a metal object hidden in an opaque medium. Integration of the nanophosphor with a silicon APD made it possible to detect pulsating X-rays at frequencies of 20 and 40Hz with a signal-to-noise ration of ~5. The results obtained might be used in the field of sensitive detection of SWL radiation. 
    more » « less
  4. Cini, Alessandro (Ed.)
    Incoming solar radiation (wavelengths 290–2500 nm) significantly affects an organism’s thermal balance via radiative heat gain. Species adapted to different environments can differ in solar reflectance profiles. We hypothesized that conspecific individuals using thermally distinct microhabitats to engage in fitness-relevant behaviors would show intraspecific differences in reflectance: we predicted individuals that use hot microclimates (where radiative heat gain represents a greater thermoregulatory challenge) would be more reflective across the entire solar spectrum than those using cooler microclimates. Differences in near-infrared (NIR) reflectance (700–2500 nm) are strongly indicative of thermoregulatory adaptation as, unlike differences in visible reflectance (400–700 nm), they are not perceived by ecological or social partners. We tested these predictions in maleCentris pallida(Hymenoptera: Apidae) bees from the Sonoran Desert. MaleC.pallidause alternative reproductive tactics that are associated with distinct microclimates: Large-morph males, with paler visible coloration, behave in an extremely hot microclimate close to the ground, while small-morph males, with a dark brown dorsal coloration, frequently use cooler microclimates above the ground near vegetation. We found that large-morph males had higher reflectance of solar radiation (UV through NIR) resulting in lower solar absorption coefficients. This thermoregulatory adaptation was specific to the dorsal surface, and produced by differences in hair, not cuticle, characteristics. Our results showed that intraspecific variation in behavior, particular in relation to microclimate use, can generate unique thermal adaptations that changes the reflectance of shortwave radiation among individuals within the same population. 
    more » « less
  5. null (Ed.)
    Solar radiation is a key factor influencing sustainable building engineering, in terms of both optical and thermal properties of building envelopes. Solar irradiance data in a conventional weather data file are broadband, representing the total of ultraviolet (UV), visible light (VIS), and near-infrared radiation (NIR), three components of the solar spectrum; however, these three components play different roles in sustainable building design and engineering. For instance, solar VIS always provides benefits to indoor building energy savings (e.g., electrical lighting), while solar NIR is beneficial to building energy savings in winter but undesirable in summer. As a consequence, there is a need for reliable separate analyses focusing on individual solar radiation components. In this work, we explore and test classification-based modeling methods for decomposing hourly broadband global horizontal solar irradiance data in conventional weather files into hourly global horizontal solar NIR components. This model can then be conveniently implemented for sustainable building design and engineering purposes. 
    more » « less