Electromagnetic (EM) metamaterials with tailored properties are developed for wave manipulation, filtering, and cloaking for aerospace and defense applications. While traditional EM metamaterials exhibit fixed behaviors due to unchangeable material properties and geometries after fabrication, reconfigurable EM metamaterials allow for tunable performance through electrical/mechanical reconfiguration strategies. Traditional biasing circuit‐based electrical reconfiguration poses challenges due to complex circuit design, while motor‐driven mechanical reconfiguration can lead to bulky and tethered structures with restricted adaptability. Herein, magnetically actuated structurally reconfigurable EM metamaterials with enhanced adaptability/conformability to different geometries, showing merits of fast, reversible, and programmable shape morphing, are developed. Magnetic actuation enables metamaterial's mechanical reconfiguration between flat deployed, flat folded, curved deployed, and curved folded states for both conformal and freestanding 3D shape morphing. Locally, the EM metamaterials fold subwavelength units for tunable properties, switching between all‐pass and band‐stop behaviors upon structural reconfiguration. Globally, the structure can conform and morph to different curved surfaces. The structurally reconfigurable metamaterial also serves as a medium for customizable subwavelength units by rationally designing attached conductive patterns for varied filtering performances such as narrow‐band, dual‐band, and wide‐band filtering behaviors, illustrating the design flexibility and application versatility of the developed structurally reconfigurable EM metamaterial.
more »
« less
Shaping lace: Machine embroidered metamaterials
The ability to easily create embroidered lace textile objects that can be manipulated in structured ways, i.e., metamaterials, could enable a variety of applications from interactive tactile graphics to physical therapy devices. However, while machine embroidery has been used to create sensors and digitally enhanced fabrics, its use for creating metamaterials is an understudied area. This article reviews recent advances in metamaterial textiles and conducts a design space exploration of metamaterial freestanding lace embroidery. We demonstrate that freestanding lace embroidery can be used to create out-of-plane kirigami and auxetic effects. We provide examples of applications of these effects to create a variety of prototypes and demonstrations.
more »
« less
- Award ID(s):
- 2327136
- PAR ID:
- 10539040
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400704963
- Page Range / eLocation ID:
- 1 to 12
- Format(s):
- Medium: X
- Location:
- Aarhus Denmark
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Mechanical metamaterials are architected manmade materials that allow for unique behaviors not observed in nature, making them promising candidates for a wide range of applications. Existing metamaterials lack tunability as their properties can only be changed to a limited extent after the fabrication. Herein, a new magneto‐mechanical metamaterial is presented that allows great tunability through a novel concept of deformation mode branching. The architecture of this new metamaterial employs an asymmetric joint design using hard‐magnetic soft active materials that permits two distinct actuation modes (bending and folding) under opposite‐direction magnetic fields. The subsequent application of mechanical compression leads to the deformation mode branching where the metamaterial architecture transforms into two distinctly different shapes, which exhibit very different deformations and enable great tunability in properties such as mechanical stiffness and acoustic bandgaps. Furthermore, this metamaterial design can be incorporated with magnetic shape memory polymers with global stiffness tunability, which also allows for the global shift of the acoustic behaviors. The combination of magnetic and mechanical actuations, as well as shape memory effects, impart wide tunable properties to a new paradigm of metamaterials.more » « less
-
Abstract For artificial materials, desired properties often conflict. For example, engineering materials often achieve high energy dissipation by sacrificing resilience and vice versa, or desired auxeticity by losing their isotropy, which limits their performance and applications. To solve these conflicts, a strategy is proposed to create novel mechanical metamaterial via 3D space filling tiles with engaging key‐channel pairs, exemplified via auxetic 3D keyed‐octahedron–cuboctahedron metamaterials. This metamaterial shows high resilience while achieving large mechanical hysteresis synergistically under large compressive strain. Especially, this metamaterial exhibits ideal isotropy approaching the theoretical limit of isotropic Poisson's ratio, ‐1, as rarely seen in existing 3D mechanical metamaterials. In addition, the new class of metamaterials provides wide tunability on mechanical properties and behaviors, including an unusual coupled auxeticity and twisting behavior under normal compression. The designing methodology is illustrated by the integral of numerical modeling, theoretical analysis, and experimental characterization. The new mechanical metamaterials have broad applications in actuators and dampers, soft robotics, biomedical materials, and engineering materials/systems for energy dissipation.more » « less
-
Abstract In recent years, mechanical metamaterials have been developed that support the propagation of an intriguing variety of nonlinear waves, including transition waves and vector solitons (solitons with coupling between multiple degrees of freedom). Here we report observations of phase transitions in 2D multistable mechanical metamaterials that are initiated by collisions of soliton-like pulses in the metamaterial. Analogous to first-order phase transitions in crystalline solids, we observe that the multistable metamaterials support phase transitions if the new phase meets or exceeds a critical nucleus size. If this criterion is met, the new phase subsequently propagates in the form of transition waves, converting the rest of the metamaterial to the new phase. More interestingly, we numerically show, using an experimentally validated model, that the critical nucleus can be formed via collisions of soliton-like pulses. Moreover, the rich direction-dependent behavior of the nonlinear pulses enables control of the location of nucleation and the spatio-temporal shape of the growing phase.more » « less
-
Abstract 2D metamaterials have immense potential in acoustics, optics, and electromagnetic applications due to their unique properties and ability to conform to curved substrates. Active metamaterials have attracted significant research attention because of their on‐demand tunable properties and performances through shape reconfigurations. 2D active metamaterials often achieve active properties through internal structural deformations, which lead to changes in overall dimensions. This demands corresponding alterations of the conforming substrate, or the metamaterial fails to provide complete area coverage, which can be a significant limitation for their practical applications. To date, achieving area‐preserving active 2D metamaterials with distinct shape reconfigurations remains a prominent challenge. In this paper, magneto‐mechanical bilayer metamaterials are presented that demonstrate area density tunability with area‐preserving capability. The bilayer metamaterials consist of two arrays of magnetic soft materials with distinct magnetization distributions. Under a magnetic field, each layer behaves differently, which allows the metamaterial to reconfigure its shape into multiple modes and to significantly tune its area density without changing its overall dimensions. The area‐preserving multimodal shape reconfigurations are further exploited as active acoustic wave regulators to tune bandgaps and wave propagations. The bilayer approach thus provides a new concept for the design of area‐preserving active metamaterials for broader applications.more » « less
An official website of the United States government

