skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing and Evaluating Interactive Tools for a Robot Hand Collection
Recent robot collections provide various interactive tools for users to explore and analyze their datasets. Yet, the literature lacks data on how users interact with these collections and which tools can best support their goals. This late-breaking report presents preliminary data on the utility of four interactive tools for accessing a collection of robot hands. The tools include a gallery and similarity comparison for browsing and filtering existing hands, a prediction tool for estimating user impression of hands (e.g., humanlikeness), and a recommendation tool suggesting design features (e.g., number of fingers) for achieving a target user impression rating. Data from a user study with 9 novice robotics researchers suggest the users found the tools useful for various tasks and especially appreciated the gallery and recommendation functionalities for understanding the complex relationships of the data. We discuss the results and outline future steps for developing interface design guidelines for robot collections.  more » « less
Award ID(s):
2301335
PAR ID:
10539047
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Association for Computing Machinery
Date Published:
ISBN:
9781450399708
Page Range / eLocation ID:
328-332
Subject(s) / Keyword(s):
robot collections, robot hands, interface design, user experience, user study
Format(s):
Medium: X
Location:
Stockholm, Sweden
Sponsoring Org:
National Science Foundation
More Like this
  1. Current Computer-Aided Design (CAD) tools lack proper support for guiding novice users towards designs ready for fabrication. We propose Shape Structuralizer (SS), an interactive design support system that repurposes surface models into structural constructions using rods and custom 3Dprinted joints. Shape Structuralizer embeds a recommendation system that computationally supports the user during design ideation by providing design suggestions on local refinements of the design. This strategy enables novice users to choose designs that both satisfy stress constraints as well as their personal design intent. The interactive guidance enables users to repurpose existing surface mesh models, analyze them in-situ for stress and displacement constraints, add movable joints to increase functionality, and attach a customized appearance. This also empowers novices to fabricate even complex constructs while ensuring structural soundness. We validate the Shape Structuralizer tool with a qualitative user study where we observed that even novice users were able to generate a large number of structurally safe designs for fabrication. 
    more » « less
  2. Designing robotic hands has been an active area of research and innovation in the last decade. However, little is known about how people perceive robot hands and react to being touched by them. To inform hand design for social robots, we created a database of 73 robot hands and ran two user studies. In the first study, 160 online users rated the hands in our database. Variations in user ratings mostly centered on the perceived Comfortableness, Interestingness, and Industrialness of the hands. In a second lab-based study, users evaluated seven physical hands and had similar ratings to results from the online study. Furthermore, we did not find a significant difference in user ratings before and after the users were touched by the hands. We provide regression models that can predict user ratings from the hand features (e.g., number of fingers) and an online interface for using our robot hand database and predictive models. 
    more » « less
  3. In interactive IR (IIR), users often seek to achieve different goals (e.g. exploring a new topic, finding a specific known item) at different search iterations and thus may evaluate system performances differently. Without state-aware approach, it would be extremely difficult to simulate and achieve real-time adaptive search evaluation and recommendation. To address this gap, our work identifies users' task states from interactive search sessions and meta-evaluates a series of online and offline evaluation metrics under varying states based on a user study dataset consisting of 1548 unique query segments from 450 search sessions. Our results indicate that: 1) users' individual task states can be identified and predicted from search behaviors and implicit feedback; 2) the effectiveness of mainstream evaluation measures (measured based upon their respective correlations with user satisfaction) vary significantly across task states. This study demonstrates the implicit heterogeneity in user-oriented IR evaluation and connects studies on complex search tasks with evaluation techniques. It also informs future research on the design of state-specific, adaptive user models and evaluation metrics. 
    more » « less
  4. Novel end-user programming (EUP) tools enable on-the-fly (i.e., spontaneous, easy, and rapid) creation of interactions with robotic systems. These tools are expected to empower users in determining system behavior, although very little is understood about how end users perceive, experience, and use these systems. In this paper, we seek to address this gap by investigating end-user experience with on-the-fly robot EUP. We trained 21 end users to use an existing on-the-fly EUP tool, asked them to create robot interactions for four scenarios, and assessed their overall experience. Our findings provide insight into how these systems should be designed to better support end-user experience with on-the-fly EUP, focusing on user interaction with an automatic program synthesizer that resolves imprecise user input, the use of multimodal inputs to express user intent, and the general process of programming a robot. 
    more » « less
  5. User representation learning is vital to capture diverse user preferences, while it is also challenging as user intents are latent and scattered among complex and different modalities of user-generated data, thus, not directly measurable. Inspired by the concept of user schema in social psychology, we take a new perspective to perform user representation learning by constructing a shared latent space to capture the dependency among different modalities of user-generated data. Both users and topics are embedded to the same space to encode users' social connections and text content, to facilitate joint modeling of different modalities, via a probabilistic generative framework. We evaluated the proposed solution on large collections of Yelp reviews and StackOverflow discussion posts, with their associated network structures. The proposed model outperformed several state-of-the-art topic modeling based user models with better predictive power in unseen documents, and state-of-the-art network embedding based user models with improved link prediction quality in unseen nodes. The learnt user representations are also proved to be useful in content recommendation, e.g., expert finding in StackOverflow. 
    more » « less