Federated Learning (FL) is a technique that allows multiple parties to train a shared model collaboratively without disclosing their private data. It has become increasingly popular due to its distinct privacy advantages. However, FL models can suffer from biases against certain demographic groups (e.g., racial and gender groups) due to the heterogeneity of data and party selection. Researchers have proposed various strategies for characterizing the group fairness of FL algorithms to address this issue. However, the effectiveness of these strategies in the face of deliberate adversarial attacks has not been fully explored. Although existing studies have revealed various threats (e.g., model poisoning attacks) against FL systems caused by malicious participants, their primary aim is to decrease model accuracy, while the potential of leveraging poisonous model updates to exacerbate model unfairness remains unexplored. In this paper, we propose a new type of model poisoning attack, EAB-FL, with a focus on exacerbating group unfairness while maintaining a good level of model utility. Extensive experiments on three datasets demonstrate the effectiveness and efficiency of our attack, even with state-of-the-art fairness optimization algorithms and secure aggregation rules employed. We hope this work will help the community fully understand the attack surfaces of current FL systems and facilitate corresponding mitigation to improve their resilience.
more »
« less
FairHash: A Fair and Memory/Time-efficient Hashmap
Hashmap is a fundamental data structure in computer science. There has been extensive research on constructing hashmaps that minimize the number of collisions leading to efficient lookup query time. Recently, the data-dependant approaches, construct hashmaps tailored for a target data distribution that guarantee to uniformly distribute data across different buckets and hence minimize the collisions. Still, to the best of our knowledge, none of the existing technique guarantees group fairness among different groups of items stored in the hashmap. Therefore, in this paper, we introduce FairHash, a data-dependant hashmap that guarantees uniform distribution at the group-level across hash buckets, and hence, satisfies the statistical parity notion of group fairness. We formally define, three notions of fairness and, unlike existing work, FairHash satisfies all three of them simultaneously. We propose three families of algorithms to design fair hashmaps, suitable for different settings. Our ranking-based algorithms reduce the unfairness of data-dependant hashmaps without any memory-overhead. The cut-based algorithms guarantee zero-unfairness in all cases, irrespective of how the data is distributed, but those introduce an extra memory-overhead. Last but not least, the discrepancy-based algorithms enable trading off between various fairness notions. In addition to the theoretical analysis, we perform extensive experiments to evaluate the efficiency and efficacy of our algorithms on real datasets. Our results verify the superiority of FairHash compared to the other baselines on fairness at almost no performance cost.
more »
« less
- Award ID(s):
- 2348919
- PAR ID:
- 10539096
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Management of Data
- Volume:
- 2
- Issue:
- 3
- ISSN:
- 2836-6573
- Page Range / eLocation ID:
- 1 to 29
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider the problem of fairly dividing a collection of indivisible goods among a set of players. Much of the existing literature on fair division focuses on notions of individual fairness. For instance, envy-freeness requires that no player prefer the set of goods allocated to another player to her own allocation. We observe that an algorithm satisfying such individual fairness notions can still treat groups of players unfairly, with one group desiring the goods allocated to another. Our main contribution is a notion of group fairness, which implies most existing notions of individual fairness. Group fairness (like individual fairness) cannot be satisfied exactly with indivisible goods. Thus, we introduce two “up to one good” style relaxations. We show that, somewhat surprisingly, certain local optima of the Nash welfare function satisfy both relaxations and can be computed in pseudo-polynomial time by local search. Our experiments reveal faster computation and stronger fairness guarantees in practice.more » « less
-
Making fair decisions is crucial to ethically implementing machine learning algorithms in social settings. In this work, we consider the celebrated definition of counterfactual fairness. We begin by showing that an algorithm which satisfies counterfactual fairness also satisfies demographic parity, a far simpler fairness constraint. Similarly, we show that all algorithms satisfying demographic parity can be trivially modified to satisfy counterfactual fairness. Together, our results indicate that counterfactual fairness is basically equivalent to demographic parity, which has important implications for the growing body of work on counterfactual fairness. We then validate our theoretical findings empirically, analyzing three existing algorithms for counterfactual fairness against three simple benchmarks. We find that two simple benchmark algorithms outperform all three existing algorithms---in terms of fairness, accuracy, and efficiency---on several data sets. Our analysis leads us to formalize a concrete fairness goal: to preserve the order of individuals within protected groups. We believe transparency around the ordering of individuals within protected groups makes fair algorithms more trustworthy. By design, the two simple benchmark algorithms satisfy this goal while the existing algorithms do not.more » « less
-
Graph cut problems are fundamental in combinatorial optimization, and are a central object of study in both theory and practice. Further, the study of fairness in Algorithmic Design and Machine Learning has recently received significant attention, with many different notions proposed and analyzed for a variety of contexts. In this paper we initiate the study of fairness for graph cut problems by giving the first fair definitions for them, and subsequently we demonstrate appropriate algorithmic techniques that yield a rigorous theoretical analysis. Specifically, we incorporate two different notions of fairness, namely demographic and probabilistic individual fairness, in a particular cut problem that models disaster containment scenarios. Our results include a variety of approximation algorithms with provable theoretical guarantees.more » « less
-
Diversity is an important principle in data selection and summarization, facility location, and recommendation systems. Our work focuses on maximizing diversity in data selection, while offering fairness guarantees. In particular, we offer the first study that augments the Max-Min diversification objective with fairness constraints. More specifically, given a universe 𝒰 of n elements that can be partitioned into m disjoint groups, we aim to retrieve a k-sized subset that maximizes the pairwise minimum distance within the set (diversity) and contains a pre-specified k_i number of elements from each group i (fairness). We show that this problem is NP-complete even in metric spaces, and we propose three novel algorithms, linear in n, that provide strong theoretical approximation guarantees for different values of m and k. Finally, we extend our algorithms and analysis to the case where groups can be overlapping.more » « less
An official website of the United States government

