Abstract Carbosulfenylation of olefins represents an important class of reactions for the synthesis of structurally diverse organosulfur compounds. Previous studies typically yield 1,2‐regioselectivity. In the context of diversity‐oriented synthesis, accessing the regioreversed products is desirable, significantly broadening the scope of these reactions. In this study, we report a nickel‐catalyzed 2,1‐carbosulfenylation of trifluoromethyl‐ andgem‐difluoroalkenes, using free thiols and benzyl bromides as sulfur and carbon sources, respectively. The unusual regioselectivity observed is enabled by a “radical sorting” mechanism. The Ni catalyst activates benzyl bromide to generate a benzylic radical that undergoes hydrogen atom transfer (HAT) with the thiol to form a sulfur‐centered radical. The sulfur radical subsequently adds to the fluoroalkenes, resulting in an α‐fluoroalkyl C‐radical. This radical undergoes SH2 with a Ni–CH2Ar to form a C(sp3)─C(sp3) bond and quaternary center, ultimately producing valuable fluoroalkyl thioethers. Isotopic labeling experiments corroborate a hydrogen atom transfer (HAT) event within the working mechanism.
more »
« less
CdS Quantum Dot Gels as a Direct Hydrogen Atom Transfer Photocatalyst for C−H Activation
Abstract Here, we report CdS quantum dot (QD) gels, a three‐dimensional network of interconnected CdS QDs, as a new type of direct hydrogen atom transfer (d‐HAT) photocatalyst for C−H activation. We discovered that the photoexcited CdS QD gel could generate various neutral radicals, including α‐amido, heterocyclic, acyl, and benzylic radicals, from their corresponding stable molecular substrates, including amides, thio/ethers, aldehydes, and benzylic compounds. Its C−H activation ability imparts a broad substrate and reaction scope. The mechanistic study reveals that this reactivity is intrinsic to CdS materials, and the neutral radical generation did not proceed via the conventional sequential electron transfer and proton transfer pathway. Instead, the C−H bonds are activated by the photoexcited CdS QD gel via a d‐HAT mechanism. This d‐HAT mechanism is supported by the linear correlation between the logarithm of the C−H bond activation rate constant and the C−H bond dissociation energy (BDE) with a Brønsted slopeα=0.5. Our findings expand the currently limited direct hydrogen atom transfer photocatalysis toolbox and provide new possibilities for photocatalytic C−H activation.
more »
« less
- PAR ID:
- 10539153
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 63
- Issue:
- 37
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A unique C(sp 3 )–H/C(sp 3 )–H dehydrocoupling of N -benzylimines with saturated heterocycles is described. Using super electron donor (SED) 2-azaallyl anions and aryl iodides as electron acceptors, single-electron-transfer (SET) generates an aryl radical. Hydrogen atom transfer (HAT) from saturated heterocycles or toluenes to the aryl radical generates alkyl radicals or benzylic radicals, respectively. The newly formed alkyl radicals and benzylic radicals couple with the 2-azaallyl radicals with formation of new C–C bonds. Experimental evidence supports the key hydrogen-abstraction by the aryl radical, which determines the chemoselectivity of the radical–radical coupling reaction. It is noteworthy that this procedure avoids the use of traditional strong oxidants and transition metals.more » « less
-
Strain Release in Hydrogen Atom Transfer from 1,4-Disubstituted Cyclohexanes to the Cumyloxy RadicalAbstract A kinetic, product, and computational study on the reactions of the cumyloxyl radical (CumO•) with 1,4-dimethyl- and 1,4-diphenylcyclohexanes is reported. The rate constants for hydrogen atom transfer (HAT) from the C–H bonds of these substrates to CumO•, together with the corresponding oxygenation product distributions reveal the role of strain release on reaction site selectivity. Transition structures and activation barriers obtained by DFT calculations are in excellent agreement with the experimental results. Tertiary/secondary ratios of oxygenation products of 0.6, 1.0, and 3.3 were observed, for trans-1,4-dimethyl-, cis-1,4-dimethyl-, and trans-1,4-diphenylcyclohexane, respectively. With cis-1,4-diphenylcyclohexane, exclusive formation of the diastereomeric tertiary alcohol products was observed. Within the two diastereomeric couples, the tertiary equatorial C–H bond in the cis- isomer is ca. 6 and 27 times more reactive, respectively, than the tertiary axial ones, a behavior that reflects the release of 1,3-diaxial strain in the HAT transition state. The tertiary axial C–H bonds of the four substrates show remarkably similar reactivities in spite of the much greater stabilization of the benzyl radicals resulting from HAT from the 1,4-diphenylcyclohexanes. The lack of benzylic acceleration is discussed in the framework of Bernasconi’s ‘principle of nonperfect synchronization’.more » « less
-
An intramolecular C(sp 3 )–H amidation proceeds in the presence of t -BuOK, molecular oxygen, and DMF. This transformation is initiated by the deprotonation of an acidic N–H bond and selective radical activation of a benzylic C–H bond towards hydrogen atom transfer (HAT). Cyclization of this radical–anion intermediate en route to a two-centered/three-electron (2c,3e) C–N bond removes electron density from nitrogen. As this electronegative element resists such an “oxidation”, making nitrogen more electron rich is key to overcoming this problem. This work dramatically expands the range of N-anions that can participate in this process by using amides instead of anilines. The resulting 10 7 -fold decrease in the N-component basicity (and nucleophilicity) doubles the activation barrier for C–N bond formation and makes this process nearly thermoneutral. Remarkably, this reaction also converts a weak reductant into a much stronger reductant. Such “reductant upconversion” allows mild oxidants like molecular oxygen to complete the first part of the cascade. In contrast, the second stage of NH/CH activation forms a highly stabilized radical–anion intermediate incapable of undergoing electron transfer to oxygen. Because the oxidation is unfavored, an alternative reaction path opens via coupling between the radical anion intermediate and either superoxide or hydroperoxide radical. The hydroperoxide intermediate transforms into the final hydroxyisoindoline products under basic conditions. The use of TEMPO as an additive was found to activate less reactive amides. The combination of experimental and computational data outlines a conceptually new mechanism for conversion of unprotected amides into hydroxyisoindolines proceeding as a sequence of C–H amidation and C–H oxidation.more » « less
An official website of the United States government
