skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago
The history of the growth of continental crust is uncertain, and several different models that involve a gradual, decelerating, or stepwise process have been proposed1,2,3,4. Even more uncertain is the timing and the secular trend of the emergence of most landmasses above the sea (subaerial landmasses), with estimates ranging from about one billion to three billion years ago5,6,7. The area of emerged crust influences global climate feedbacks and the supply of nutrients to the oceans8, and therefore connects Earth’s crustal evolution to surface environmental conditions9,10,11. Here we use the triple-oxygen-isotope composition of shales from all continents, spanning 3.7 billion years, to provide constraints on the emergence of continents over time. Our measurements show a stepwise total decrease of 0.08 per mille in the average triple-oxygen-isotope value of shales across the Archaean–Proterozoic boundary. We suggest that our data are best explained by a shift in the nature of water–rock interactions, from near-coastal in the Archaean era to predominantly continental in the Proterozoic, accompanied by a decrease in average surface temperatures. We propose that this shift may have coincided with the onset of a modern hydrological cycle owing to the rapid emergence of continental crust with near-modern average elevation and aerial extent roughly 2.5 billion years ago.  more » « less
Award ID(s):
0942447
PAR ID:
10539194
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Macmillan Publishers Limited, part of Springer Nature
Date Published:
Journal Name:
Nature
Volume:
557
Issue:
7706
ISSN:
0028-0836
Page Range / eLocation ID:
545 to 548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This Chapter considers triple oxygen isotope variations and their 4 Gyr temporal evolution in bulk siliciclastic sedimentary rocks and in granites. The d18O and D'17O values provide new insights into weathering in the modern and ancient hydrosphere and coeval crustal petrogenesis. We make use of the known geological events and processes that affect the rock cycle: supercontinent assembly and breakup that influence continent-scale and global climate, the fraction of the exposed crust undergoing weathering, and isotopic values of precipitation. New data from a 5000 m Texas drillhole into the Oligocene Frio Formation demonstrate minimal isotopic shifts from mudrocks to shales during diagenesis, mostly related to expulsion of water from smectite-rich loosely cemented sediment and its conversion to illite-rich shale. Inversion of triple oxygen isotope fractionations return isotopic values and temperatures along the hole depth that are more consistent with weathering conditions in the Oligocene and modern North America (d18O = -7 to -15‰, and T of +15 to +45°C) rather than d18O from 8 to 10‰ diagenetic water in the drill hole at 175-195°C. More precise T and d18Owater are obtained where the chemical index of alteration (CIA) based detrital contribution is subtracted from these sediments. Triple oxygen isotopes from suspended sediments in major world rivers record conditions (T and d18Ow) of their watersheds, and not the composition of bedrock because weathering is water-dominated. In parallel, the Chapter presents new analyses of 100 granites, orthogneisses, migmatites, tonalite-trondhjemite-granodiorite (TTG), and large-volume ignimbrites from around the world that range in age from 4 Ga to modern. Most studied granites are orogenic and anatectic in origin and represent large volume remelting/assimilation of shales and other metasediments; the most crustal and high-d18O of these are thus reflect and record the average composition of evolving continental crust. Granites also develop a significant progressive increase in d18O values from 6-7‰ (4-2.5 Ga) to 10-13‰ (~1.8-1.2 Ga) after which d18O stays constant or even decreases. More importantly, we observe a moderate -0.03‰ step-wise decrease in D'17O between 2.1 and 2.5 Ga, which is about half of the step-wise decrease observed in shales over this time interval. We suggest that granites, as well as shales, record the significant advent and greater volumetric appearance of low-D'17O, high-d18O weathering products (shales) altered by meteoric waters upon rapid emergence of large land masses at ~2.4 Ga, although consider alternative interpretations. These weathering products were incorporated into abundant 2.0-1.8 Ga orogens around the world, where upon remelting, they passed their isotopic signature to the granites. We further observe the dichotomy of high-D'17O Archean shales, and unusually low-D'17O Archean granites. We attribute this to greater contribution from shallow crustal hydrothermal contribution to shales in greenstone belts, while granites in the earliest 3.0-4.0 Ga crust and TTGs require involvement of hydrothermal products with lower-D'17O signatures at moderately high-d18O, which we attribute to secondary silicification of their protoliths before partial melting. The Chapter further discusses evolution of the shale record through geologic history and discusses the step-wise change in d18O and D'17O values at Archean/Proterozoic transition. Denser coverage for shales in the past 1 billion years permits investigation of the rocks and their weathering in the last supercontinent cycle, with observed lighter d18O values, characteristic for the mid-Phanerozoic at the initiation of Gondwana breakup. The continuing increase in d18O values of the shales since 4 Ga is interpreted to reflect accumulation of weathering products via shale accretion to continents, as low-density and buoyant shales tend to not subduct back into the mantle. The rock cycle passes triple oxygen isotopic signatures from precipitation to sedimentary, metasedimentary, and finally to anatectic igneous rocks. Continental crust became progressively heavier in d18O, lighter in D'17O due to incremental accumulation of high-d18O sediments in accretionary wedges. Second-order trends in d18O and D'17O are due to supercontinent cycles and glacial episodes. 
    more » « less
  2. The triple oxygen isotope composition (Δ’ 17 O) of sulfate minerals is widely used to constrain ancient atmospheric p O 2 / p CO 2 and rates of gross primary production. The utility of this tool is based on a model that sulfate oxygen carries an isotope fingerprint of tropospheric O 2 incorporated through oxidative weathering of reduced sulfur minerals, particularly pyrite. Work to date has targeted Proterozoic environments (2.5 billion to 0.542 billion years ago) where large isotope anomalies persist; younger timescale records, which would ground ancient environmental interpretation in what we know from modern Earth, are lacking. Here we present a high-resolution record of the δ 18 O and Δ’ 17 O in marine sulfate for the last 130 million years of Earth history. This record carries a Δ’ 17 O close to 0o, suggesting that the marine sulfate reservoir is under strict control by biogeochemical cycling (namely, microbial sulfate reduction), as these reactions follow mass-dependent fractionation. We identify no discernible contribution from atmospheric oxygen on this timescale. We interpret a steady fractional contribution of microbial sulfur cycling (terrestrial and marine) over the last 100 million years, even as global weathering rates are thought to vary considerably. 
    more » « less
  3. Abstract Earth’s silica-rich continental crust is unique among the terrestrial planets and is critical for planetary habitability. Cratons represent the most imperishable continental fragments and form about 50% of the continental crust of the Earth, yet the mechanisms responsible for craton stabilization remain enigmatic1. Large tracts of strongly differentiated crust formed between 3 and 2.5 billion years ago, during the late Mesoarchaean and Neoarchaean time periods2. This crust contains abundant granitoid rocks with elevated concentrations of U, Th and K; the formation of these igneous rocks represents the final stage of stabilization of the continental crust2,3. Here, we show that subaerial weathering, triggered by the emergence of continental landmasses above sea level, facilitated intracrustal melting and the generation of peraluminous granitoid magmas. This resulted in reorganization of the compositional architecture of continental crust in the Neoarchaean period. Subaerial weathering concentrated heat-producing elements into terrigenous sediments that were incorporated into the deep crust, where they drove crustal melting and the chemical stratification required to stabilize the cratonic lithosphere. The chain of causality between subaerial weathering and the final differentiation of Earth’s crust implies that craton stabilization was an inevitable consequence of continental emergence. Generation of sedimentary rocks enriched in heat-producing elements, at a time in the history of the Earth when the rate of radiogenic heat production was on average twice the present-day rate, resolves a long-standing question of why many cratons were stabilized in the Neoarchaean period. 
    more » « less
  4. Abstract Exposed continents are one of Earth's major characteristics. Recent studies on ancient ocean volume and exposed landmasses suggest, however, that early Earth was possibly a water world, where any significant landmass was unlikely to have risen above sea level. On modern Earth, the thickness of continental crust seems to be controlled by sea level and the buoyancy of continental crust. Simply applying this concept to the Archean would not explain the absence of exposed continents, and we suggest that a third element that is currently insignificant was important during early Earth: the strength of continental upper crust. Based on the pressure imbalance expected at continent-ocean boundaries, we quantified the conditions under which rock strength controls the thickness of continental crust. With the level of radiogenic heat production expected for early Earth, continents may have been too weak to have maintained their thickness against a deep ocean. 
    more » « less
  5. Triple oxygen isotope (δ17O and δ18O) values of high- and low-temperature altered oceanic crust and products of basalt alteration experiments were measured to better constrain ocean isotope compositions in deep time. The data define an array of δ18O and Δ′17O (Δ′17O=δ′17O – λRL × δ′18O + γ) values from mantle values toward 1‰ and –0.01‰, respectively, with a λ of ~0.523. The altered oceanic crust data were used to construct a model for estimating δ18O-Δ′17O values of the ancient oceans if the continental weathering flux (FCW) and/or hydrothermal oceanic crust alteration flux (FHT) changed through time. A maximum lowering of 7‰ and 4‰, respectively, is achieved in the most extreme cases. The δ18O value of the ocean cannot be raised by more than 1.1‰. Eclogites from the Roberts Victor kimberlite (South Africa), with a protolith age of 3.1 Ga, have δ18O-Δ′17O values that precisely overlap with those of the modern altered oceanic crust, suggesting that the Archean oceans had similar isotope values as today. Published triple isotope data for Archean cherts show that all samples have been altered to some degree and suggest an Archean ocean surface temperature of ~70–100 °C. An ocean as light as –2‰ is still consistent with our eclogite data and reduce our temperature estimates by 10 °C. 
    more » « less