ABSTRACT There is a wealth of evidence to suggest that planetary systems can survive beyond the main sequence. Most commonly, white dwarfs are found to be accreting material from tidally disrupted asteroids, whose bulk compositions are reflected by the metals polluting the stellar photospheres. While many examples are known, most lack the deep, high-resolution data required to detect multiple elements, and thus characterize the planetesimals that orbit them. Here, spectra of seven DZ white dwarfs observed with Keck High Resolution Echelle Spectrometer (HIRES) are analysed, where up to nine metals are measured per star. Their compositions are compared against those of Solar system objects, working in a Bayesian framework to infer or marginalize over the accretion history. All of the stars have been accreting primitive material, similar to chondrites, with hints of a Mercury-like composition at one star. The most polluted star is observed several Myr after its last major accretion episode, in which a Moon-sized object met its demise.
more »
« less
Stellar Outbursts and Chondrite Composition
Abstract The temperatures of observed protoplanetary disks are not sufficiently high to produce the accretion rate needed to form stars, nor are they sufficient to explain the volatile depletion patterns in CM, CO, and CV chondrites and terrestrial planets. We revisit the role that stellar outbursts, caused by high-accretion episodes, play in resolving these two issues. These outbursts provide the necessary mass to form the star during the disk lifetime and provide enough heat to vaporize planet-forming materials. We show that these outbursts can reproduce the observed chondrite abundances at distances near 1 au. These outbursts would also affect the growth of calcium-aluminum-rich inclusions and the isotopic compositions of carbonaceous and noncarbonaceous chondrites.
more »
« less
- Award ID(s):
- 1910955
- PAR ID:
- 10539299
- Publisher / Repository:
- AAS Journals
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 958
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 58
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A modest fraction of the stars in galactic nuclei fed toward the central supermassive black hole (SMBH) approach on low-eccentricity orbits driven by gravitational-wave radiation (extreme mass ratio inspiral (EMRI)). In the likely event that a gaseous accretion disk is created in the nucleus during this slow inspiral (e.g., via an independent tidal disruption event (TDE)), star–disk collisions generate regular short-lived flares consistent with the observed quasiperiodic eruption (QPE) sources. We present a model for the coupled star-disk evolution, which self-consistently accounts for mass and thermal energy injected into the disk from stellar collisions and associated mass ablation. For weak collision/ablation heating, the disk is thermally unstable and undergoes limit-cycle oscillations, which modulate its properties and lead to accretion-powered outbursts on timescales of years to decades, with a time-averaged accretion rate ∼0.1Ṁ Edd. Stronger collision/ablation heating acts to stabilize the disk, enabling roughly steady accretion at the EMRI-stripping rate. In either case, the stellar destruction time through ablation, and hence the maximum QPE lifetime, is ∼102–103yr, far longer than fallback accretion after a TDE. The quiescent accretion disks in QPE sources may at the present epoch be self-sustaining and fed primarily by EMRI ablation. Indeed, the observed range of secular variability broadly matches those predicted for collision-fed disks. Changes in the QPE recurrence pattern following such outbursts, similar to that observed in GSN 069, could arise from temporary misalignment between the EMRI-fed disk and the SMBH equatorial plane as the former regrows its mass after a state transition.more » « less
-
Abstract Some electromagnetic outbursts from the nuclei of distant galaxies have been found to repeat on months-to-years timescales, and each of these sources can putatively arise from the accretion flares generated through the repeated tidal stripping of a star on a bound orbit about a supermassive black hole (SMBH), i.e., a repeating partial tidal disruption event (rpTDE). Here, we test the rpTDE model through analytical estimates and hydrodynamical simulations of the interaction between a range of stars, which differ from one another in mass and age, and an SMBH. We show that higher-mass (≳1M⊙), evolved stars can survive many (≳10−100) encounters with an SMBH while simultaneously losingfew× 0.01M⊙, resulting in accretion flares that are approximately evenly spaced in time with nearly the same amplitude, quantitatively reproducing ASASSN-14ko. We also show that the energy imparted to the star via tides can lead to a change in its orbital period that is comparable to the observed decay in the recurrence time of ASASSN-14ko’s flares, . Contrarily, lower-mass and less-evolved stars lose progressively more mass and produce brighter accretion flares on subsequent encounters for the same pericenter distances, leading to the rapid destruction of the star and cessation of flares. Such systems cannot reproduce ASASSN-14ko-like transients, but are promising candidates for recreating events such as AT2020vdq, which displayed a second and much brighter outburst compared to the first. Our results imply that the lightcurves of repeating transients are tightly coupled with stellar type.more » « less
-
Abstract We present a study of the orbital light curves of the recurrent nova IM Normae since its 2002 outburst. The broad “eclipses” recur with a 2.46 hr period, which increases on a timescale of 1.28(16) × 106yr. Under the assumption of conservative mass transfer, this suggests a rate near 10−7M⊙yr−1, and this agrees with the estimatedaccretionrate of the postnova, based on our estimate of luminosity. IM Nor appears to be a close match to the famous recurrent nova T Pyxidis. Both stars appear to have very high accretion rates, sufficient to drive the recurrent-nova events. Both have quiescent light curves, which suggest strong heating of the low-mass secondary, and very wide orbital minima, which suggest obscuration of a large “corona” around the primary. And both have very rapid orbital period increases, as expected from a short-period binary with high mass transfer from the low-mass component. These two stars may represent a final stage of nova—and cataclysmic variable—evolution, in which irradiation-driven winds drive a high rate of mass transfer, thereby evaporating the donor star in a paroxysm of nova outbursts.more » « less
-
Abstract KV UMa (XTE J1118+480) is an X-ray binary that is known to undergo outbursts in 2000 and 2005. This paper presents the discovery of a large outburst starting in 1927 on the archival photographic plates and an analysis of the long-term optical activity of this system. We used the photographic data from DASCH (Digital Access to a Sky Century @ Harvard). We placed the 1927 outburst in the context of the observed outbursts of KV UMa. We show that it is a double event, with a precursor similar to the one of the outbursts in 2000. We find a big difference between the 1927 and 2000 outbursts as regards the length of the gap between the precursor and the main outburst. It is more than 250 d in 1927, whereas it is about 20 d in 2000, although the brightnesses of all peaks are mutually comparable. We also show that the individual optical outbursts of KV UMa differ from each other by the duration of the stage of a slow decline of brightness (sometimes roughly a plateau). This determines the length of the entire main outburst. Both the peak magnitude and the brightness of the outburst when the slow decline transitions to a steep final decaying branch plausibly reproduce in all three outbursts. In the interpretation, the short duration of the precursor is caused by the fact that only the thermal-viscous instability operated in the accretion disk while also the tidal instability of the disk contributed in the subsequent main outburst.more » « less
An official website of the United States government

