skip to main content


Search for: All records

Award ID contains: 1910955

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Holden Thorp, Ali Shilatifard (Ed.)

    The origin of Earth’s volatile elements is highly debated. Comparing the chalcogen isotope ratios in the bulk silicate Earth (BSE) to those of its possible building blocks, chondritic meteorites, allows constraints on the origin of Earth’s volatiles; however, these comparisons are complicated by potential isotopic fractionation during protoplanetary differentiation, which largely remains poorly understood. Using first-principles calculations, we find that core-mantle differentiation does not notably fractionate selenium and tellurium isotopes, while equilibrium evaporation from early planetesimals would enrich selenium and tellurium in heavy isotopes in the BSE. The sulfur, selenium, and tellurium isotopic signatures of the BSE reveal that protoplanetary differentiation plays a key role in establishing most of Earth’s volatile elements, and a late veneer does not substantially contribute to the BSE’s volatile inventory.

     
    more » « less
    Free, publicly-accessible full text available December 6, 2024
  2. null (Ed.)
  3. null (Ed.)
    ABSTRACT The maximum temperature and radial temperature profile in a protoplanetary disc are important for the condensation of different elements in the disc. We simulate the evolution of a set of protoplanetary discs from the collapse of their progenitor molecular cloud cores as well as the dust decoupling within the discs as they evolve. We show how the initial properties of the cloud cores affect the thermal history of the protoplanetary discs using a simple viscous disc model. Our results show that the maximum mid-plane temperature in the disc occurs within 0.5 au. It increases with the initial cloud temperature and decreases with its angular velocity and the viscosity of the disc. From the observed properties of the molecular cloud cores, we find the median value of the maximum temperature is around 1250 K, with roughly 90 per cent of them being less than 1500 K – a value that is lower than the 50 per cent condensation temperatures of most refractory elements. Therefore, only cloud cores with high initial temperatures or low-angular velocities and/or low viscosities within the planet-forming discs will result in refractory-rich planetesimals. To reproduce the volatile depletion pattern of CM, CO, and CV chondrites and the terrestrial planets in Solar system, one must either have rare properties of the initial molecular cloud cores like high core temperature, or other sources of energy to heat the disc to sufficiently high temperatures. Alternatively, the volatile depletion observed in these chondrites may be inherited from the progenitor molecular cloud. 
    more » « less
  4. ABSTRACT Partial condensation of dust from the Solar nebula is likely responsible for the diverse chemical compositions of chondrites and rocky planets/planetesimals in the inner Solar system. We present a forward physical–chemical model of a protoplanetary disc to predict the chemical compositions of planetary building blocks that may form from such a disc. Our model includes the physical evolution of the disc and the condensation, partial advection, and decoupling of the dust within it. The chemical composition of the condensate changes with time and radius. We compare the results of two dust condensation models: one where an element condenses when the mid-plane temperature in the disc is lower than the 50 per cent condensation temperature ($\rm T_{50}$) of that element and the other where the condensation of the dust is calculated by a Gibbs free energy minimization technique assuming chemical equilibrium at local disc temperature and pressure. The results of two models are generally consistent with some systematic differences of ∼10 per cent depending upon the radial distance and an element’s condensation temperature. Both models predict compositions similar to CM, CO, and CV chondrites provided that the decoupling time-scale of the dust is of the order of the evolution time-scale of the disc or longer. If the decoupling time-scale is too short, the composition deviates significantly from the measured values. These models may contribute to our understanding of the chemical compositions of chondrites, and ultimately the terrestrial planets in the Solar system, and may constrain the potential chemical compositions of rocky exoplanets. 
    more » « less