Abstract Adaptive and bioinspired droplet-based materials are built using the droplet interface bilayer (DIB) technique, assembling networks of lipid membranes through adhered microdroplets. The properties of these lipid membranes are linked to the properties of the droplets forming the interface. Consequently, rearranging the relative positions of the droplets within the network will also alter the properties of the lipid membranes formed between them, modifying the transmembrane exchanges between neighboring compartments. In this work, we achieved this through the use of magnetic fluids or ferrofluids selectively dispersed within the droplet-phase of DIB structures. First, the ferrofluid DIB properties are optimized for reconfiguration using a coupled experimental-computational approach, exploring the ideal parameters for droplet manipulation through magnetic fields. Next, these findings are applied towards larger, magnetically-heterogeneous collections of DIBs to investigate magnetically-driven reconfiguration events. Activating electromagnets bordering the DIB networks generates rearrangement events by separating and reforming the interfacial membranes bordering the dispersed magnetic compartments. These findings enable the production of dynamic droplet networks capable of modifying their underlying membranous architecture through magnetic forces.
more »
« less
DropletMask: Leveraging visual data for droplet impact analysis
Abstract Machine learning‐assisted computer vision represents a state‐of‐the‐art technique for extracting meaningful features from visual data autonomously. This approach facilitates the quantitative analysis of images, enabling object detection and tracking. In this study, we utilize advanced computer vision to precisely identify droplet motions and quantify their impact forces with spatiotemporal resolution at the picoliter or millisecond scale. Droplets, captured by a high‐speed camera, are denoised through neuromorphic image processing. These processed images are employed to train convolutional neural networks, allowing the creation of segmented masks and bounding boxes around moving droplets. The trained networks further digitize time‐varying multi‐dimensional droplet features, such as droplet diameters, spreading and sliding motions, and corresponding impact forces. Our innovative method offers accurate measurement of small impact forces with a resolution of approximately 10 pico‐newtons for droplets in the micrometer range across various configurations with the time resolution at hundreds of microseconds.
more »
« less
- Award ID(s):
- 2045322
- PAR ID:
- 10539532
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Droplet
- Volume:
- 3
- Issue:
- 4
- ISSN:
- 2769-2159
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A key challenge underlying the design of miniature machines is encoding materials with time‐ and space‐specific functional behaviors that require little human intervention. Dissipative processes that drive materials beyond equilibrium and evolve continuously with time and location represent one promising strategy to achieve such complex functions. This work reports how internal nonequilibrium states of liquid crystal (LC) emulsion droplets undergoing chemotaxis can be used to time the delivery of a chemical agent to a targeted location. During ballistic motion, hydrodynamic shear forces dominate LC elastic interactions, dispersing microdroplet inclusions (microcargo) within double emulsion droplets. Scale‐dependent colloidal forces then hinder the escape of dispersed microcargo from the propelling droplet. Upon arrival at the targeted location, a circulatory flow of diminished strength allows the microcargo to cluster within the LC elastic environment such that hydrodynamic forces grow to exceed colloidal forces and thus trigger the escape of the microcargo. This work illustrates the utility of the approach by using microcargo that initiate polymerization upon release through the outer interface of the carrier droplet. These findings provide a platform that utilizes nonequilibrium strategies to design autonomous spatial and temporal functions into active materials.more » « less
-
Advection-enhanced heat and mass transport from a single droplet neutrally suspended in a simple shear flow has been studied using high-fidelity numerical simulation. The capillary number ranges from 0.01 to 0.5, which encompasses the entire range of small deformation, large deformation, and breakup of the droplets. The Reynolds number is from 0.01 to 1, including regions of both weak and strong advection. The temperature and mass concentration are modeled as the concentration of a passive scalar released at the droplet surface. Two Schmidt numbers, 10 and 100, are considered, for which flow advection plays a role in the transport of passive scalar. For unbroken droplets, the interaction between the carrier fluid and the suspended droplet leads to several different flows around the droplet. The fluid motions together with scalar diffusion constitute a coupled transport mechanism for passive scalar. The dependence of scalar release rate on Reynolds and Peclet numbers can be roughly described by the correlation for a rigid sphere. For broken droplets, the basic flow features around the droplet during the process of elongation and breakup are similar to those of an unbroken droplet. The variation of the scalar release rate can be decomposed into several stages, corresponding to the process of droplet elongation and breakup. The variation of the scalar release rate exhibits a high correlation with the capillary, Reynolds, and Peclet numbers. This suggests that it is feasible to develop an empirical model that incorporates the effects of the number and size distributions of child droplets after breakup.more » « less
-
Abstract Electrohydrodynamic jet (e‐jet) printing is a high‐resolution printed electronics technique that uses an electric field to generate droplets. It has great application potential with the rapid development of flexible and wearable electronics. Triboelectric nanogenerators (TENG), which can convert mechanical motions into electricity, have found many high‐voltage applications with unique merits of portability, controllability, safety, and cost‐effectiveness. In this work, the application of a TENG is extended to printed electronics by employing it to drive e‐jet printing. A rotary freestanding TENG is applied as the high‐voltage power source for generating stable ink droplet ejection. The TENG‐driven droplet generation and ejection process and printed features with varied operation parameters are investigated. Results reveal that the jetting frequency could be controlled by the TENG's operation frequency, and high‐resolution printing with feature size smaller than nozzle size is achieved using the setup. Notably, TENG as the power source for e‐jet printing supplies a limited amount of current, which leads to better safety for both equipment and personnel compared to conventional high‐voltage power supplies. With the superiority of TENG in the sense of safety and cost, the work presents a promising solution for the next‐generation of high‐resolution printed electronics and broadens the scope of TENG application.more » « less
-
Orb weavers produce webs that trap prey using a capture spiral formed of regularly spaced glue droplets supported by protein fibers. Each droplet consists of an outer aqueous layer and an adhesive, viscoelastic glycoprotein core. Organic and inorganic compounds in the aqueous layer make droplets hygroscopic and cause droplet features to change with environmental humidity. When droplets contact a surface, they adhere and extend as an insect struggles. Thus, a droplet’s extensibility is as important for prey capture as its adhesion. Cursory observations show that droplets can adhere, extend, and pull off from a surface several times, a process called cycling. Our study cycled individual droplets of four species—Argiope aurantia, Neoscona crucifera, Verrucosa arenata, and Larinioides cornutus. Droplets were subjected to 40 cycles at two humidities to determine how humidity affected droplet performance. We hypothesized that droplets would continue to perform, but that performance would decrease. Droplet performance was characterized by filament length and force on droplets at pull-off, aqueous volume, and glycoprotein volume. As hypothesized, cycling decreased performance, notably extensibility and aqueous volume. However, humidity did not impact the response to cycling. In a natural context, droplets are not subjected to extensive cycling, but reusability is advantageous for orb-weaving spiders. Moreover, the ability to cycle, combined with their environmental responsiveness, allows us to characterize orb weaver droplets as smart materials for the first time.more » « less
An official website of the United States government
