A bstract We develop a hydrodynamic effective field theory on the Schwinger-Keldysh contour for fluids with charge, energy, and momentum conservation, but only discrete rotational symmetry. The consequences of anisotropy on thermodynamics and first-order dissipative hydrodynamics are detailed in some simple examples in two spatial dimensions, but our construction extends to any spatial dimension and any rotation group (discrete or continuous). We find many possible terms in the equations of motion which are compatible with the existence of an entropy current, but not with the ability to couple the fluid to background gauge fields and vielbein.
more »
« less
Direction-dependent dynamics of colloidal particle pairs and the Stokes-Einstein relation in quasi-two-dimensional fluids
Abstract Hydrodynamic interactions are important for diverse fluids, especially those with low Reynolds number such as microbial and particle-laden suspensions, and proteins diffusing in membranes. Unfortunately, while far-field (asymptotic) hydrodynamic interactions are fully understood in two- and three-dimensions, near-field interactions are not, and thus our understanding of motions in dense fluid suspensions is still lacking. In this contribution, we experimentally explore the hydrodynamic correlations between particles in quasi-two-dimensional colloidal fluids in the near-field. Surprisingly, the measured displacement and relaxation of particle pairs in the body frame exhibit direction-dependent dynamics that can be connected quantitatively to the measured near-field hydrodynamic interactions. These findings, in turn, suggest a mechanism for how and when hydrodynamics can lead to a breakdown of the ubiquitous Stokes-Einstein relation (SER). We observe this breakdown, and we show that the direction-dependent breakdown of the SER is ameliorated along directions where hydrodynamic correlations are smallest. In total, the work uncovers significant ramifications of near-field hydrodynamics on transport and dynamic restructuring of fluids in two-dimensions.
more »
« less
- Award ID(s):
- 2003659
- PAR ID:
- 10539673
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The rheology of suspensions of rings (tori) rotating in an unbounded low Reynolds number simple shear flow is calculated using numerical simulations at dilute particle number densities ( n ≪ 1 ). Suspensions of non-Brownian rings are studied by computing pair interactions that include hydrodynamic interactions modeled using slender body theory and particle collisions modeled using a short-range repulsive force. Particle contact and hydrodynamic interactions were found to have comparable influences on the steady-state Jeffery orbit distribution. The average tilt of the ring away from the flow-vorticity plane increased during pairwise interactions compared to the tilt associated with Jeffery rotation and the steady-state orbit distribution. Particle stresses associated with the increased tilt during the interaction were found to be comparable to the stresses induced directly by particle contact forces and the hydrodynamic velocity disturbances of other particles. The hydrodynamic diffusivity coefficients in the gradient and vorticity directions were also obtained and were found to be two orders of magnitude larger than the corresponding values in fiber suspensions at the same particle concentrations. Rotary Brownian dynamics simulations of isolated Brownian rings were used to understand the shear rate dependence of suspension rheology. The orbit distribution observed in the regime of weak Brownian motion, P e ≫ ϕ T − 3, was surprisingly similar to that obtained from pairwise interaction calculations of non-Brownian rings. Here, the Peclet number P e is the ratio of the shear rate and the rotary diffusivity of the particle and ϕ T is the effective inverse-aspect ratio of the particle (approximately equal to 2 π times the inverse of its non-dimensional Jeffery time period). Thus, the rheology results obtained from pairwise interactions should retain accuracy even for weakly Brownian rings ( n ≪ 1 and ϕ T − 3 ≪ P e ).more » « less
-
A<sc>bstract</sc> Euler hydrodynamics of perfect fluids can be viewed as an effective bosonic field theory. In cases when the underlying microscopic system involves Dirac fermions, the quantum anomalies should be properly described. In 1+1 dimensions the action formulation of hydrodynamics at zero temperature is reconsidered and shown to be equal to standard field-theory bosonization. Furthermore, it can be derived from a topological gauge theory in one extra dimension, which identifies the fluid variables through the anomaly inflow relations. Extending this framework to 3+1 dimensions yields an effective field theory/hydrodynamics model, capable of elucidating the mixed axial-vector and axial-gravitational anomalies of Dirac fermions. This formulation provides a platform for bosonization in higher dimensions. Moreover, the connection with 4+1 dimensional topological theories suggests some generalizations of fluid dynamics involving additional degrees of freedom.more » « less
-
Non-colloidal suspensions undergoing dipolar interactions in an electric field have been extensively studied and are also known as smart materials as they share similarities with electrorheological (ER) fluids. Although the macroscopic responses are well-documented, the multiscale nature of such suspensions is still lacking. In this study, a large-scale Stokesian dynamics simulation is used to investigate the structural formation of such suspensions in an electric field up to highly concentrated regimes across different length scales: from particle-level (microscale) to particle cluster-level (mesoscale) and stress response-level (macroscale). It is observed that at a volume fraction of ϕ ≈ 30%, the steady-state structures are the most isotropic at the microscale, but at the macroscale, their normal stress fields are the most anisotropic. Interestingly, these structures are also the most heterogeneous at both the microscale and mesoscale. Furthermore, the effects of confinement on the multiscale responses are explored, revealing that there could be a strong link between the mesoscale and macroscale. This multiscale nature can offer the potential for precisely controlling or designing ER fluids in practical applications.more » « less
-
Giant number fluctuations are often considered as a hallmark of the emergent nonequilibrium dynamics of active fluids. However, these anomalous density fluctuations have only been reported experimentally in two-dimensional dry active systems heretofore. Here, we investigate density fluctuations of bulk Escherichia coli suspensions, a paradigm of three-dimensional (3D) wet active fluids. Our experiments demonstrate the existence and quantify the scaling relation of giant number fluctuations in 3D bacterial suspensions. Surprisingly, the anomalous scaling persists at small scales in low-concentration suspensions well before the transition to active turbulence, reflecting the long-range nature of hydrodynamic interactions of 3D wet active fluids. To illustrate the origin of the density fluctuations, we measure the energy spectra of suspension flows and explore the density–energy coupling in both the steady and transient states of active turbulence. A scale-invariant density-independent correlation between density fluctuations and energy spectra is uncovered across a wide range of length scales. In addition, our experiments show that the energy spectra of bacterial turbulence exhibit the scaling of 3D active nematic fluids, challenging the common view of dense bacterial suspensions as active polar fluids.more » « less
An official website of the United States government

