Abstract A machine learning-based drug screening technique has been developed and optimized using convolutional neural network-derived fingerprints. The optimization of weights in the neural network-based fingerprinting technique was compared with fixed Morgan fingerprints in regard to binary classification on drug-target binding affinity. The assessment was carried out using six different target proteins using randomly chosen small molecules from the ZINC15 database for training. This new architecture proved to be more efficient in screening molecules that less favorably bind to specific targets and retaining molecules that favorably bind to it. Scientific contribution We have developed a new neural fingerprint-based screening model that has a significant ability to capture hits. Despite using a smaller dataset, this model is capable of mapping chemical space similar to other contemporary algorithms designed for molecular screening. The novelty of the present algorithm lies in the speed with which the models are trained and tuned before testing its predictive capabilities and hence is a significant step forward in the field of machine learning-embedded computational drug discovery.
more »
« less
Energy-based generative models for target-specific drug discovery
Drug targets are the main focus of drug discovery due to their key role in disease pathogenesis. Computational approaches are widely applied to drug development because of the increasing availability of biological molecular datasets. Popular generative approaches can create new drug molecules by learning the given molecule distributions. However, these approaches are mostly not for target-specific drug discovery. We developed an energy-based probabilistic model for computational target-specific drug discovery. Results show that our proposed TagMol can generate molecules with similar binding affinity scores asrealmolecules. GAT-based models showed faster and better learning relative to Graph Convolutional Network baseline models.
more »
« less
- PAR ID:
- 10539715
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Molecular Medicine
- Volume:
- 3
- ISSN:
- 2674-0095
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Conventional drug discovery is expensive, time-consuming, and prone to failure. Artificial intelligence has become a potent substitute over the last decade, providing strong answers to challenging biological issues in this field. Among these difficulties, drug-target binding (DTB) is a key component of drug discovery techniques. In this context, drug-target affinity and drug–target interaction are complementary and essential frameworks that work together to improve our comprehension of DTB dynamics. In this work, we thoroughly analyze the most recent deep learning models, popular benchmark datasets, and assessment metrics for DTB prediction. We look at the paradigm shift in the development of drug discovery research since researchers started using deep learning as a potent tool for DTB prediction. In particular, we examine how methodologies have evolved, starting with early heterogeneous network-based approaches, progressing to graph-based approaches that were widely accepted, followed by modern attention-based architectures, and finally, the most recent multimodal approaches. We also provide case studies utilizing an extensive compound library against specific protein targets implicated in critical cancer pathways to demonstrate the usefulness of these approaches. In addition to summarizing the latest developments in DTB prediction models, this review also identifies their drawbacks. It also highlights the outlook for the DTB prediction domain and future research directions. Combined, these studies present a more comprehensive view of how deep learning offers a quantitative framework for researching drug-target relationships, speeding up the identification of new drug candidates and making it easier to identify possible DTBs.more » « less
-
Designing molecules with specific structural and functional properties (e.g., drug-likeness and water solubility) is central to advancing drug discovery and material science, but it poses outstanding challenges both in wet and dry laboratories. The search space is vast and rugged. Recent advances in deep generative models are motivating new computational approaches building over deep learning to tackle the molecular space. Despite rapid advancements, state-of-the-art deep generative models for molecule generation have many limitations, including lack of interpretability. In this paper we address this limitation by proposing a generic framework for interpretable molecule generation based on novel disentangled deep graph generative models with property control. Specifically, we propose a disentanglement enhancement strategy for graphs. We also propose new deep neural architecture to achieve the above learning objective for inference and generation for variable-size graphs efficiently. Extensive experimental evaluation demonstrates the superiority of our approach in various critical aspects, such as accuracy, novelty, and disentanglement.more » « less
-
Abstract MotivationProperties of molecules are indicative of their functions and thus are useful in many applications. With the advances of deep-learning methods, computational approaches for predicting molecular properties are gaining increasing momentum. However, there lacks customized and advanced methods and comprehensive tools for this task currently. ResultsHere, we develop a suite of comprehensive machine-learning methods and tools spanning different computational models, molecular representations and loss functions for molecular property prediction and drug discovery. Specifically, we represent molecules as both graphs and sequences. Built on these representations, we develop novel deep models for learning from molecular graphs and sequences. In order to learn effectively from highly imbalanced datasets, we develop advanced loss functions that optimize areas under precision–recall curves (PRCs) and receiver operating characteristic (ROC) curves. Altogether, our work not only serves as a comprehensive tool, but also contributes toward developing novel and advanced graph and sequence-learning methodologies. Results on both online and offline antibiotics discovery and molecular property prediction tasks show that our methods achieve consistent improvements over prior methods. In particular, our methods achieve #1 ranking in terms of both ROC-AUC (area under curve) and PRC-AUC on the AI Cures open challenge for drug discovery related to COVID-19. Availability and implementationOur source code is released as part of the MoleculeX library (https://github.com/divelab/MoleculeX) under AdvProp. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
-
Abstract New drug production, from target identification to marketing approval, takes over 12 years and can cost around $2.6 billion. Furthermore, the COVID-19 pandemic has unveiled the urgent need for more powerful computational methods for drug discovery. Here, we review the computational approaches to predicting protein–ligand interactions in the context of drug discovery, focusing on methods using artificial intelligence (AI). We begin with a brief introduction to proteins (targets), ligands (e.g. drugs) and their interactions for nonexperts. Next, we review databases that are commonly used in the domain of protein–ligand interactions. Finally, we survey and analyze the machine learning (ML) approaches implemented to predict protein–ligand binding sites, ligand-binding affinity and binding pose (conformation) including both classical ML algorithms and recent deep learning methods. After exploring the correlation between these three aspects of protein–ligand interaction, it has been proposed that they should be studied in unison. We anticipate that our review will aid exploration and development of more accurate ML-based prediction strategies for studying protein–ligand interactions.more » « less
An official website of the United States government

