Abstract. The Arctic Mediterranean (AM) is the collective name forthe Arctic Ocean, the Nordic Seas, and their adjacent shelf seas. Water enters into thisregion through the Bering Strait (Pacific inflow) and through the passages across theGreenland–Scotland Ridge (Atlantic inflow) and is modified within the AM. The modifiedwaters leave the AM in several flow branches which are grouped into two differentcategories: (1) overflow of dense water through the deep passages across theGreenland–Scotland Ridge, and (2) outflow of light water – here termed surface outflow– on both sides of Greenland. These exchanges transport heat and salt into and out ofthe AM and are important for conditions in the AM. They are also part of the global oceancirculation and climate system. Attempts to quantify the transports by various methodshave been made for many years, but only recently the observational coverage has becomesufficiently complete to allow an integrated assessment of the AM exchanges based solelyon observations. In this study, we focus on the transport of water and have collecteddata on volume transport for as many AM-exchange branches as possible between 1993 and2015. The total AM import (oceanic inflows plusfreshwater) is found to be 9.1 Sv (sverdrup,1 Sv =106 m3 s−1) with an estimated uncertainty of 0.7 Sv and hasthe amplitude of the seasonal variation close to 1 Sv and maximum import in October.Roughly one-third of the imported water leaves the AM as surface outflow with theremaining two-thirds leaving as overflow. The overflow water is mainly produced frommodified Atlantic inflow and around 70 % of the total Atlantic inflow is convertedinto overflow, indicating a strong coupling between these two exchanges. The surfaceoutflow is fed from the Pacific inflow and freshwater (runoff and precipitation), but isstill approximately two-thirds of modified Atlantic water. For the inflowbranches and the two main overflow branches (Denmark Strait and Faroe Bank Channel),systematic monitoring of volume transport has been established since the mid-1990s, andthis enables us to estimate trends for the AM exchanges as a whole. At the 95 %confidence level, only the inflow of Pacific water through the Bering Strait showed astatistically significant trend, which was positive. Both the total AM inflow and thecombined transport of the two main overflow branches also showed trends consistent withstrengthening, but they were not statistically significant. They do suggest, however,that any significant weakening of these flows during the last two decades is unlikely andthe overall message is that the AM exchanges remained remarkably stable in the periodfrom the mid-1990s to the mid-2010s. The overflows are the densest source water for thedeep limb of the North Atlantic part of the meridional overturning circulation (AMOC),and this conclusion argues that the reported weakening of the AMOC was not due tooverflow weakening or reduced overturning in the AM. Although the combined data set hasmade it possible to establish a consistent budget for the AM exchanges, the observationalcoverage for some of the branches is limited, which introduces considerable uncertainty.This lack of coverage is especially extreme for the surface outflow through the DenmarkStrait, the overflow across the Iceland–Faroe Ridge, and the inflow over the Scottishshelf. We recommend that more effort is put into observing these flows as well asmaintaining the monitoring systems established for the other exchange branches.
more »
« less
Upper Ocean Transport in the Anegada Passage From Multi‐Year Glider Surveys
Abstract Caribbean through‐flow accounts for two‐thirds of the Florida Current and consequently is an important conduit of heat and salt fluxes in the upper limb of the Atlantic Meridional Overturning Circulation (AMOC). Considering there is evidence that up to one‐half of the Florida Current originates as South Atlantic Water (SAW), determining the distribution of SAW throughout the Caribbean Island passages is important as this constitutes the major pathway for cross‐equatorial AMOC return flow. The Anegada Passage (AP) is a major pathway for subtropical gyre inflow and suggested to be a potential SAW inflow pathway worth revisiting. Here, we present glider‐based observations of temperature, salinity and subsurface velocity that represent the first observations of any type in the AP in nearly 20 years. An isopycnal water mass analysis is conducted to quantify the transport of water masses with South Atlantic or North Atlantic origin. Two potentially new aspects of AP transport are revealed. The total AP transport (−4.8 Sv) is shown to be larger than previously estimated, potentially by up to a factor of two. The transport of SAW through the AP (−1.66 Sv) is also shown to be larger than previously estimated, which represents 35% of the total transport reported here and 28% of the SAW entering the Caribbean north of the Windward Island Passages. These results indicate the AP may be an important pathway for cross‐equatorial AMOC return flow. These results also provide evidence that gliders with acoustic doppler profilers are a viable method for measuring island passage transport.
more »
« less
- Award ID(s):
- 2216150
- PAR ID:
- 10539716
- Publisher / Repository:
- https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2022JC019608
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 128
- Issue:
- 7
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract. The Atlantic meridional overturning circulation (AMOC) has been observed continuously at 26° N since April 2004. The AMOC and its component parts are monitored by combining a transatlantic array of moored instruments with submarine-cable-based measurements of the Gulf Stream and satellite derived Ekman transport. The time series has recently been extended to October 2012 and the results show a downward trend since 2004. From April 2008 to March 2012, the AMOC was an average of 2.7 Sv (1 Sv = 106 m3 s−1) weaker than in the first four years of observation (95% confidence that the reduction is 0.3 Sv or more). Ekman transport reduced by about 0.2 Sv and the Gulf Stream by 0.5 Sv but most of the change (2.0 Sv) is due to the mid-ocean geostrophic flow. The change of the mid-ocean geostrophic flow represents a strengthening of the southward flow above the thermocline. The increased southward flow of warm waters is balanced by a decrease in the southward flow of lower North Atlantic deep water below 3000 m. The transport of lower North Atlantic deep water slowed by 7% per year (95% confidence that the rate of slowing is greater than 2.5% per year).more » « less
-
Abstract The flow of warm water into the Nordic Seas plays an important role for the mild climate of central and northern Europe. Here we estimate the stability of this flow thanks to the extensive hydrographic record that dates back to the early 1900s. Using all casts in two areas with little mean flow just south and north of the Greenland‐Scotland Ridge that bracket the two main inflow branches, we find a well‐defined approximately ±0.5 Sv volume transport (and a corresponding ±30 TW heat flux) variation in synchrony with the Atlantic multidecadal variability that peaked most recently around 2010 and is now trending down. No evidence is found for a long‐term trend in transport over the last 70 to 100 years.more » « less
-
Abstract Northward ocean heat transport at 26°N in the Atlantic Ocean has been measured since 2004. The ocean heat transport is large—approximately 1.25 PW, and on interannual time scales it exhibits surprisingly large temporal variability. There has been a long-term reduction in ocean heat transport of 0.17 PW from 1.32 PW before 2009 to 1.15 PW after 2009 (2009–16) on an annual average basis associated with a 2.5-Sv (1 Sv ≡ 106 m3 s−1) drop in the Atlantic meridional overturning circulation (AMOC). The reduction in the AMOC has cooled and freshened the upper ocean north of 26°N over an area following the offshore edge of the Gulf Stream/North Atlantic Current from the Bahamas to Iceland. Cooling peaks south of Iceland where surface temperatures are as much as 2°C cooler in 2016 than they were in 2008. Heat uptake by the atmosphere appears to have been affected particularly along the path of the North Atlantic Current. For the reduction in ocean heat transport, changes in ocean heat content account for about one-quarter of the long-term reduction in ocean heat transport while reduced heat uptake by the atmosphere appears to account for the remainder of the change in ocean heat transport.more » « less
-
Abstract The origins of the upper branch of the Atlantic meridional overturning circulation (AMOC) are traced with backward‐in‐time Lagrangian trajectories, quantifying the partition of volume transport between different routes of entry from the Indo‐Pacific into the Atlantic. Particles are advected by the velocity field from a recent release of “Estimating the Circulation and Climate of the Ocean” (ECCOv4). This global time‐variable velocity field is a dynamically consistent interpolation of over 1 billion oceanographic observations collected between 1992 and 2015. Of the 13.6 Sverdrups (1 Sv = 106 m3/s) flowing northward across 6°S, 15% enters the Atlantic from Drake Passage, 35% enters from the straits between Asia and Australia (Indonesian Throughflow), and 49% comes from the region south of Australia (Tasman Leakage). Because of blending in the Agulhas region, water mass properties in the South Atlantic are not a good indicator of origin.more » « less
An official website of the United States government

