skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Online Control and Moment of Inertia Estimation of Tethered Debris
Tethered capture of space debris is a promising method of Active Debris Removal, but has numerous well-known challenges in the post-capture phase. Control of the system in this phase is complicated by nonlinear dynamics with the potential of chaotic motion, unknown debris parameters, and debris tumbling. The inherent uncertainty present in the system and the need for control often necessitate the estimation of debris states and parameters such that the post-capture system can remain controlled. To this end, a relative distance Proportional-Integral-Derivative control and an Unscented Kalman Filter are implemented during the post-capture phase of an ADR mission. It is assumed that some debris (target) states and properties are unknown to the chaser, requiring the estimation of the attitude, angular rates, and principal moments of inertia of the target. For estimating these states, the UKF uses measurements of the tether tension magnitude and pixel coordinates of feature points on the target provided by a camera mounted on the chaser. Both estimation and control are done simultaneously, simulating online estimation and control of an ADR mission. The PID control was found to maintain safe conditions when using the estimated states in two separate Monte-Carlo simulations, differing in the measurement frequency of the pixel coordinates, while the estimation of the principal moments of inertia of the debris was satisfactory.  more » « less
Award ID(s):
2105011
PAR ID:
10539750
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Aeronautics and Astronautics
Date Published:
ISBN:
978-1-62410-711-5
Format(s):
Medium: X
Location:
Orlando, FL
Sponsoring Org:
National Science Foundation
More Like this
  1. Tethered net systems are considered one of the most effective solutions for addressing the problem of space debris. However, it is crucial to study the robustness of net-based debris capture in the presence of a wide range of possible activation and environmental uncertainties. The aim of this study was to analyze the limitations and operational envelope of tethered net systems in capturing space debris, with a particular focus on robustness and safety. The success of capture in nonnominal conditions was investigated, with errors considered in the target position, angular velocity, and parameters concerning the ejection of the net. In the sensitivity study, a capture quality index and mission safety factor were used to evaluate the success or failure of capture in an automated way. The quantitative relationships between relative parameter errors and capture evaluation metrics are also presented. The results of the sensitivity studies are promising and suggest that the target capture is robust to inaccuracies in the mission parameters beyond what is expected in reality. 
    more » « less
  2. Fast-frequency control strategies have been proposed in the literature to maintain inertial response of electric generation and help with the frequency regulation of the system. However, it is challenging to deploy such strategies when the inertia constant of the system is unknown and time-varying. In this paper, we present a data-driven system identification approach for an energy storage system (ESS) operator to identify the inertial response of the system (and consequently the inertia constant). The method is first tested and validated with a simulated genset model using small changes in the system load as the excitation signal and measuring the corresponding change in frequency. The validated method is then used to experimentally identify the inertia constant of a genset. The inertia constant of the simulated genset model was estimated with an error of less than 5% which provides a reasonable estimate for the ESS operator to properly tune the parameters of a fast-frequency controller. 
    more » « less
  3. null (Ed.)
    Estimation of the properties of a physical system with minimal uncertainty is a central task in quantum metrology. Optical phase estimation is at the center of many metrological tasks where the value of a physical parameter is mapped to the phase of an electromagnetic field and single-shot measurements of this phase are necessary. While there are measurements able to estimate the phase of light in a single shot with small uncertainties, demonstrations of near-optimal single-shot measurements for an unknown phase of a coherent state remain elusive. Here, we propose and demonstrate strategies for single-shot measurements for ab initio phase estimation of coherent states that surpass the sensitivity limit of heterodyne measurement and approach the Cramer-Rao lower bound for coherent states. These single-shot estimation strategies are based on real-time optimization of coherent displacement operations, single photon counting with photon number resolution, and fast feedback. We show that our demonstration of these optimized estimation strategies surpasses the heterodyne limit for a wide range of optical powers without correcting for detection efficiency with a moderate number of adaptive measurement steps. This is, to our knowledge, the most sensitive single-shot measurement of an unknown phase encoded in optical coherent states. 
    more » « less
  4. Southeastern United States frequently experience tornadoes, necessitating rapid response and recovery efforts by state and federal agencies. Accurate information about the extent and severity of tornado-induced damage, especially debris volume and locations, is crucial for these efforts. This study, therefore, focuses on post-tornado debris assessment in Leon County, Florida, which was hit by two EF-2 and an EF-1 tornadoes in May 2024. Using satellite imagery from the Planetscope satellite and Geographic Information Systems (GIS), a macro-level evaluation of tornado debris impact was conducted, particularly on roadways and impacted communities. The proposed approach includes an evaluation of the overall post-tornado debris impact across the entire county and its population, and a detailed analysis of debris impact on roadways and its effect on accessibility. Spectral indices from satellite images, specifically the Normalized Difference Vegetation Index (NDVI), were utilized to derive assessment parameters. By comparing NDVI values from pre- and post-tornado images, we analyzed changes in vegetation and debris accumulation along roadway segments leading to possible roadway closures. This integrated method provides critical insights for enhancing disaster response and recovery operations in tornado-prone regions. Findings indicate that high volumes of vegetative debris were present in the south-central parts of the county, which is occupied by the highest population of county residents. The roadway segments in this region also recorded highest debris volumes, which is a critical information for agencies that need to know highly impacted locations. Comparing the results to ground truth damage data, the accuracy recorded was 74%. 
    more » « less
  5. The earth’s orbit is becoming increasingly crowded with debris that poses significant safety risks to the operation of existing and new spacecraft and satellites. The active tether-net system, which consists of a flexible net with maneuverable corner nodes, launched from a small autonomous spacecraft, is a promising solution to capturing and disposing of such space debris. The requirement of autonomous operation and the need to generalize over debris scenarios in terms of different rotational rates makes the capture process significantly challenging. The space debris could rotate about multiple axes, which along with sensing/estimation and actuation uncertainties, call for a robust, generalizable approach to guiding the net launch and flight – one that can guarantee robust capture. This paper proposes a decentralized actuation system combined with reinforcement learning based on prior work in designing and controlling this tether-net system. In this new system, four microsatellites with thrusters act as the corner nodes of the net, and can thus help control the flight of the net after launch. The microsatellites pull the net to complete the task of approaching and capturing the space debris. The proposed method uses a reinforcement learning framework that integrates a proximal policy optimization to find the optimal solution based on the dynamics simulation of the net and the MUs in Vortex Studio. The reinforcement learning framework finds the optimal trajectory that is both energy-efficient and ensures a desired level of capture quality 
    more » « less