The rapid transition towards an inverter-dominated power system has reduced the inertial response capability of modern power systems. As a solution, inverters are equipped with control strategies, which can emulate inertia by exchanging power with the grid based on frequency changes. This paper discusses the various current control techniques for application in these systems, known as virtual inertia systems. Some classic control techniques like the proportional-integral, the proportional-resonant, and the hysteresis control are presented first, followed by the design and discussion of two more advanced control techniques based on model prediction and machine learning, respectively. MATLAB/Simulink-based simulations are performed, and results are presented to compare these control techniques in terms of harmonic performance, switching frequency, and transient response.
more »
« less
Inertia Estimation in Power Systems using Energy Storage and System Identification Techniques
Fast-frequency control strategies have been proposed in the literature to maintain inertial response of electric generation and help with the frequency regulation of the system. However, it is challenging to deploy such strategies when the inertia constant of the system is unknown and time-varying. In this paper, we present a data-driven system identification approach for an energy storage system (ESS) operator to identify the inertial response of the system (and consequently the inertia constant). The method is first tested and validated with a simulated genset model using small changes in the system load as the excitation signal and measuring the corresponding change in frequency. The validated method is then used to experimentally identify the inertia constant of a genset. The inertia constant of the simulated genset model was estimated with an error of less than 5% which provides a reasonable estimate for the ESS operator to properly tune the parameters of a fast-frequency controller.
more »
« less
- Award ID(s):
- 1726964
- PAR ID:
- 10191182
- Date Published:
- Journal Name:
- 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)
- Page Range / eLocation ID:
- 577 to 582
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In isolated power systems with low rotational inertia, fast-frequency control strategies are required to maintain frequency stability. Furthermore, with limited resources in such isolated systems, the deployed control strategies have to provide the flexibility to handle operational constraints so the controller is optimal from a technical as well as an economical point-ofview. In this paper, a model predictive control (MPC) approach is proposed to maintain the frequency stability of these low inertia power systems, such as microgrids. Given a predictive model of the system, MPC computes control actions by recursively solving a finite-horizon, online optimization problem that satisfies peak power output and ramp-rate constraints. MATLAB/Simulink based simulations show the effectiveness of the controller to reduce frequency deviations and the rate-of-change-of-frequency (ROCOF) of the system. By proper selection of controller parameters, desired performance can be achieved while respecting the physical constraints on inverter peak power and/or ramp-rates.more » « less
-
null (Ed.)With the increasing integration of renewable energy, the problems associated with deteriorating grid frequency profile and potential power system instability have become more significant. In this paper, the inertial control algorithm using Virtual Synchronous Generator (VSG) is implemented on type-4 Permanent Magnet Synchronous Generator (PMSG) - wind turbine generator (WTG). The overall nonlinear dynamic model and its small-signal linearization of PMSG-WTG using VSG is established and comprehensively analyzed. Inevitably, the direct application of VSG introduces large inertia which causes conflict between the fast-varying of available wind power and inverter control with slow dynamics, particularly in region 2 of wind turbine. Aiming to address such issue, VSG with multiple virtual rotating masses is proposed in order to improve the active power tracking performance as well as to boost inertial control of a VSG. The inertial responses are verified in a modified 10MVA IEEE 14 bus microgrid system. The assessment of the simulation results demonstrates the applicability of VSG on renewable energy generation units.more » « less
-
In this paper two nonlinear effects are investigated. One is the effect of the static stiffness nonlinearity in changing the linear dynamic natural frequency and the other is the combination of nonlinear stiffness and nonlinear inertia effects in changing the nonlinear dynamic transient response due to a change in the initial release state of the system. A theoretical model has been developed for a cantilevered thin plate with a range of length to width ratio using beam theory and considering both stiffness and inertial nonlinearities in the model. Lagrange’s equation was used to deduce nonlinear inertia and stiffness matrices for a modal representation. Some insights into how these nonlinear components influence the beam response are presented. Measurements with both a hammer test and also a release test of cantilevered thin plates were done using different configurations and tip mass values. Results from static and dynamic analysis using the linear and the nonlinear theoretical model show good agreement between theory and experiment for natural frequencies and the amplitude displacements versus time.more » « less
-
This letter proposes a data-driven inertia estimator for inverter-based resources (IBRs) with grid-forming control. It is able to track both constant and time-varying inertia. By utilizing the Thevenin equivalent, the virtual frequency inside IBRs is first estimated with only its terminal voltage and current phasor measurements. The virtual frequency and the measurements are then used together to derive the state-space swing equation model. Then, an enhanced adaptive Unscented Kalman filter (EAUKF) is developed to estimate IBR inertia. Numerical results on the modified IEEE 39-bus power system demonstrate that the proposed inertia estimator remarkably outperforms the existing state-of-art methods both in tracking speed and accuracy.more » « less