Abstract Anthropogenic disturbance can have important influences on the fitness and behaviors of wild animals, including their boldness when exposed to risky conditions. We presented spotted hyenas (Crocuta crocuta) from two populations, each exposed to a different level of human activity, with a life‐size model hyena representing an intruder from another clan. The high‐disturbance population lived adjacent to human settlements, and the low‐disturbance population inhabited a relatively undisturbed part of the same national park in Kenya. The mock intruder was presented to individual hyenas to assess their reactions to an alien hyena, and to determine whether their reactions varied with their exposure to anthropogenic activity. We found that human disturbance was indeed associated with hyena risk‐taking behavior in response to the model intruder. Hyenas tested in the low‐disturbance area exhibited more risk‐taking behaviors by approaching the mock intruder more closely, and spending more time near it, than did their counterparts living in high‐disturbance areas. Hyenas that spent less time in close proximity to the model had greater survivorship than those that spent more time in close proximity to it, regardless of disturbance level. Furthermore, the individual differences in risk‐taking measured here were consistent with those obtained previously from the same animals using a different set of experimental manipulations. However, the experimentally induced behaviors were not consistent with naturally occurring risk‐taking behaviors in proximity to lions; this suggests that risk‐taking behaviors are consistent within individuals across experimental contexts, but that exposure to lions elicits different responses. Although our results are consistent with those from earlier tests of anthropogenic disturbance and boldness in spotted hyenas and other predators, they differ from results obtained from birds and small mammals, which are generally found to be bolder in areas characterized by human disturbance.
more »
« less
Accelerometer-based predictions of behaviour elucidate factors affecting the daily activity patterns of spotted hyenas
Animal activity patterns are highly variable and influenced by internal and external factors, including social processes. Quantifying activity patterns in natural settings can be challenging, as it is difficult to monitor animals over long time periods. Here, we developed and validated a machine-learning-based classifier to identify behavioural states from accelerometer data of wild spotted hyenas(Crocuta crocuta), social carnivores that live in large fission–fusion societies. By combining this classifier with continuous collar-based accelerometer data from five hyenas, we generated a complete record of activity patterns over more than one month. We used these continuous behavioural sequences to investigate how past activity, individual idiosyncrasies, and social synchronization influence hyena activity patterns. We found that hyenas exhibit characteristic crepuscular-nocturnal daily activity patterns. Time spent active was independent of activity level on previous days, suggesting that hyenas do not show activity compensation. We also found limited evidence for an effect of individual identity on activity, and showed that pairs of hyenas who synchronized their activity patterns must have spent more time together. This study sheds light on the patterns and drivers of activity in spotted hyena societies, and also provides a useful tool for quantifying behavioural sequences from accelerometer data.
more »
« less
- PAR ID:
- 10539878
- Publisher / Repository:
- The Royal Society
- Date Published:
- Journal Name:
- Royal Society Open Science
- Volume:
- 10
- Issue:
- 11
- ISSN:
- 2054-5703
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Populations of large carnivores are declining in many parts of the world due to anthropogenic activity. Some species of large carnivores, however, are able to coexist with people by altering their behavior. Altered behaviors may be challenging to identify in large carnivores because these animals are typically cryptic, nocturnal, live at low densities, and because changes in their behavior may be subtle or emerge slowly over many years. We studied the effects of livestock presence on the movements of one large carnivore, the spotted hyena (Crocuta crocuta). We fit 22 adult female spotted hyenas with GPS collars to quantify their movements in areas with and without livestock or herders present, in and around a protected area in southwestern Kenya. We investigated anthropogenic, social, and ecological effects on the speed of movement, distances traveled, long-distance movements, and extraterritorial excursions by spotted hyenas. Hyenas living primarily within the protected area, but in the presence of livestock and herders, moved faster, traveled over longer distances, and were more likely to be within their territories than did conspecifics living in areas without livestock and herders. Hyenas of low social rank were more likely than hyenas of high social rank to engage in long-distance travel events, and these were more likely to occur when prey were scarce. The movement patterns of this large African carnivore indicate a flexibility that may allow them to persist in landscapes that are becoming increasingly defined by people.more » « less
-
ABSTRACT Environment structure often shapes social interactions. Spatial attractors that draw multiple individuals may play a particularly important role in dispersed groups, where individuals must first encounter one another to interact. We use GPS data recorded simultaneously from five spotted hyenas (Crocuta crocuta) within a single clan to investigate how communal dens and daily ranging patterns shape fission-fusion dynamics (subgroup splits and merges). We introduce a species-general framework for identifying and characterizing dyadic fission-fusion events and describe a taxonomy of ten possible configurations of these events. Applying this framework to the hyena data illuminates the spatiotemporal structure of social interactions within hyenas’ daily routines. The most common types of fission-fusion events involve close approaches between individuals, do not involve co-travel together, and occur at the communal den. Comparison to permutation-based reference models suggests that den usage structures broad-scale patterns of social encounters, but that other factors influence how those encounters unfold. We discuss the dual role of communal dens in hyenas as physical and social resources, and suggest that dens are an example of a general “social piggybacking” process whereby environmental attractors take on social importance as reliable places to encounter conspecifics, causing social and spatial processes to become fundamentally intertwined.more » « less
-
Abstract Fission–fusion dynamics describe the tendency for members of some animal societies to associate in subgroups that change size and structure fluidly over time. These dynamics shape social complexity and social structure, but are difficult to study because they unfold simultaneously over large spatial scales. Here we use simultaneous, fine-scale GPS data from spotted hyenas to examine fission–fusion dynamics through a dyadic analysis ofmerge-split eventsbetween pairs of individuals. We introduce a species-agnostic framework for identifying merge-split events and discretizing them into three phases (merging, together, and splitting), enabling analysis of each phase as well as the connections among phases. Applying this framework to the hyena data, we examine the temporal and spatial properties of merges and splits between dyads and test the extent to which social encounters are driven by key locations. Specifically, we focus on communal dens—shelters for juvenile hyenas where classical observational studies often report large aggregations of adults. We find that overall, 62% of merges occurred at communal dens, supporting the idea that dens facilitate meet-ups and subsequent social behavior. Social encounters most commonly involved close approaches within a few meters between hyenas, while co-travel together occurred in only 11% of events. Comparison to permutation-based reference models suggests that independent movement decisions structure broad-scale patterns of social encounters but do not explain the fine-scale dynamics of interactions that unfold during these encounters. We reflect on how physical features such as dens can become social hotspots, causing social and spatial processes to become fundamentally intertwined.more » « less
-
Abstract The reproductive biology of many female mammals is affected by their social environment and their interactions with conspecifics. In mammalian societies structured by linear dominance hierarchies, such as that of the spotted hyena (Crocuta crocuta), a female’s social rank can have profound effects on both her reproductive success and her longevity. In this species, social rank determines priority of access to food, which is the resource limiting reproduction. Due largely to rank-related variation in access to food, reproduction from the perspective of a female spotted hyena can only be understood in the context of her position in the social hierarchy. In this review, we examine the effects of rank on the various phases of reproduction, from mating to weaning. Summed over many individual reproductive lifespans, the effect of rank at these different reproductive phases leads to dramatic rank-related variation in fitness among females and their lineages. Finally, we ask why females reproduce socially despite these apparent costs of group living to low-ranking females. Gregariousness enhances the fitness of females regardless of their positions in the social hierarchy, and females attempting to survive and reproduce without clanmates lose all their offspring. The positive effects of gregariousness appear to result from having female allies, both kin and non-kin, who cooperate to advertise and defend a shared territory, acquire, and defend food resources, maintain the status quo, and occasionally also to rise in social rank.more » « less
An official website of the United States government

