Abstract We present efficient algorithms for counting points on a smooth plane quartic curve X modulo a prime p . We address both the case where X is defined over $${\mathbb {F}}_p$$ F p and the case where X is defined over $${\mathbb {Q}}$$ Q and p is a prime of good reduction. We consider two approaches for computing $$\#X({\mathbb {F}}_p)$$ # X ( F p ) , one which runs in $$O(p\log p\log \log p)$$ O ( p log p log log p ) time using $$O(\log p)$$ O ( log p ) space and one which runs in $$O(p^{1/2}\log ^2p)$$ O ( p 1 / 2 log 2 p ) time using $$O(p^{1/2}\log p)$$ O ( p 1 / 2 log p ) space. Both approaches yield algorithms that are faster in practice than existing methods. We also present average polynomial-time algorithms for $$X/{\mathbb {Q}}$$ X / Q that compute $$\#X({\mathbb {F}}_p)$$ # X ( F p ) for good primes $$p\leqslant N$$ p ⩽ N in $$O(N\log ^3 N)$$ O ( N log 3 N ) time using O ( N ) space. These are the first practical implementations of average polynomial-time algorithms for curves that are not cyclic covers of $${\mathbb {P}}^1$$ P 1 , which in combination with previous results addresses all curves of genus $$g\leqslant 3$$ g ⩽ 3 . Our algorithms also compute Cartier–Manin/Hasse–Witt matrices that may be of independent interest.
more »
« less
Mean Field Approximations via Log-Concavity
Abstract We propose a new approach to deriving quantitative mean field approximations for any probability measure $$P$$ on $$\mathbb {R}^{n}$$ with density proportional to $$e^{f(x)}$$, for $$f$$ strongly concave. We bound the mean field approximation for the log partition function $$\log \int e^{f(x)}dx$$ in terms of $$\sum _{i \neq j}\mathbb {E}_{Q^{*}}|\partial _{ij}f|^{2}$$, for a semi-explicit probability measure $$Q^{*}$$ characterized as the unique mean field optimizer, or equivalently as the minimizer of the relative entropy $$H(\cdot \,|\,P)$$ over product measures. This notably does not involve metric-entropy or gradient-complexity concepts which are common in prior work on nonlinear large deviations. Three implications are discussed, in the contexts of continuous Gibbs measures on large graphs, high-dimensional Bayesian linear regression, and the construction of decentralized near-optimizers in high-dimensional stochastic control problems. Our arguments are based primarily on functional inequalities and the notion of displacement convexity from optimal transport.
more »
« less
- Award ID(s):
- 2045328
- PAR ID:
- 10333535
- Publisher / Repository:
- International Mathematics Research Notices
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- Volume:
- 2024
- Issue:
- 7
- ISSN:
- 1073-7928
- Page Range / eLocation ID:
- 2206.01260
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Let f : ℙ 1 → ℙ 1 {f:\mathbb{P}^{1}\to\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K . For each point a ∈ ℙ 1 ( k ) {a\in\mathbb{P}^{1}(k)} satisfying a dynamical stability condition, we prove that the Call–Silverman canonical height for specialization f t {f_{t}} at point a t {a_{t}} , for t ∈ X ( ℚ ¯ ) {t\in X(\overline{\mathbb{Q}})} outside a finite set, induces a Weil height on the curve X ; i.e., we prove the existence of a ℚ {\mathbb{Q}} -divisor D = D f , a {D=D_{f,a}} on X so that the function t ↦ h ^ f t ( a t ) - h D ( t ) {t\mapsto\hat{h}_{f_{t}}(a_{t})-h_{D}(t)} is bounded on X ( ℚ ¯ ) {X(\overline{\mathbb{Q}})} for any choice of Weil height associated to D . We also prove a local version, that the local canonical heights t ↦ λ ^ f t , v ( a t ) {t\mapsto\hat{\lambda}_{f_{t},v}(a_{t})} differ from a Weil function for D by a continuous function on X ( ℂ v ) {X(\mathbb{C}_{v})} , at each place v of the number field K . These results were known for polynomial maps f and all points a ∈ ℙ 1 ( k ) {a\in\mathbb{P}^{1}(k)} without the stability hypothesis,[21, 14],and for maps f that are quotients of endomorphisms of elliptic curves E over k and all points a ∈ ℙ 1 ( k ) {a\in\mathbb{P}^{1}(k)} . [32, 29].Finally, we characterize our stability condition in terms of the geometry of the induced map f ~ : X × ℙ 1 ⇢ X × ℙ 1 {\tilde{f}:X\times\mathbb{P}^{1}\dashrightarrow X\times\mathbb{P}^{1}} over K ; and we prove the existence of relative Néron models for the pair ( f , a ) {(f,a)} , when a is a Fatou point at a place γ of k , where the local canonical height λ ^ f , γ ( a ) {\hat{\lambda}_{f,\gamma}(a)} can be computed as an intersection number.more » « less
-
Abstract Let$$\mathbb {F}_q^d$$ be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ and a fixed nonzero$$t\in \mathbb {F}_q$$ , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ , where$$h_y:E\rightarrow \{0,1\}$$ is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ that if$$|E|\ge Cq^{\frac{11}{4}}$$ andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ isdwhenever$$E\subseteq \mathbb {F}_q^d$$ with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ .more » « less
-
Let $$p$$ be an odd prime, $q=p^e$, $$e \geq 1$$, and $$\mathbb{F} = \mathbb{F}_q$$ denote the finite field of $$q$$ elements. Let $$f: \mathbb{F}^2\to \mathbb{F}$$ and $$g: \mathbb{F}^3\to \mathbb{F}$$ be functions, and let $$P$$ and $$L$$ be two copies of the 3-dimensional vector space $$\mathbb{F}^3$$. Consider a bipartite graph $$\Gamma_\mathbb{F} (f, g)$$ with vertex partitions $$P$$ and $$L$$ and with edges defined as follows: for every $$(p)=(p_1,p_2,p_3)\in P$$ and every $$[l]= [l_1,l_2,l_3]\in L$$, $$\{(p), [l]\} = (p)[l]$$ is an edge in $$\Gamma_\mathbb{F} (f, g)$$ if $$p_2+l_2 =f(p_1,l_1) \;\;\;\text{and}\;\;\; p_3 + l_3 = g(p_1,p_2,l_1).$$The following question appeared in Nassau: Given $$\Gamma_\mathbb{F} (f, g)$$, is it always possible to find a function $$h:\mathbb{F}^2\to \mathbb{F}$$ such that the graph $$\Gamma_\mathbb{F} (f, h)$$ with the same vertex set as $$\Gamma_\mathbb{F} (f, g)$$ and with edges $(p)[l]$ defined in a similar way by the system $$p_2+l_2 =f(p_1,l_1) \;\;\;\text{and}\;\;\; p_3 + l_3 = h(p_1,l_1),$$ is isomorphic to $$\Gamma_\mathbb{F} (f, g)$$ for infinitely many $$q$$? In this paper we show that the answer to the question is negative and the graphs $$\Gamma_{\mathbb{F}_p}(p_1\ell_1, p_1\ell_1p_2(p_1 + p_2 + p_1p_2))$$ provide such an example for $$p \equiv 1 \pmod{3}$$. Our argument is based on proving that the automorphism group of these graphs has order $$p$$, which is the smallest possible order of the automorphism group of graphs of the form $$\Gamma_{\mathbb{F}}(f, g)$$.more » « less
-
Let be a dominant rational self-map of a smooth projective variety defined over $$\overline{\mathbb{Q}}$$ . For each point $$P\in X(\overline{\mathbb{Q}})$$ whose forward $$f$$ -orbit is well defined, Silverman introduced the arithmetic degree $$\unicode[STIX]{x1D6FC}_{f}(P)$$ , which measures the growth rate of the heights of the points $$f^{n}(P)$$ . Kawaguchi and Silverman conjectured that $$\unicode[STIX]{x1D6FC}_{f}(P)$$ is well defined and that, as $$P$$ varies, the set of values obtained by $$\unicode[STIX]{x1D6FC}_{f}(P)$$ is finite. Based on constructions by Bedford and Kim and by McMullen, we give a counterexample to this conjecture when $$X=\mathbb{P}^{4}$$ .more » « less
An official website of the United States government

