Complex neural network architectures are being increasingly used to learn to compute the semantic resemblances among natural language texts. It is necessary to establish a lower bound of performance that must be met in or- der for new complex architectures to be not only novel, but also worthwhile in terms of implementation. This paper focuses on the specific task of determin- ing semantic textual similarity (STS). We construct a number of models from simple to complex within a framework and report our results. Our findings show that a small number of LSTM stacks with an LSTM stack comparator produces the best results. We use Se- mEval 2017 STS Competition Dataset for evaluation.
more »
« less
Linguistically Conditioned Semantic Textual Similarity
Semantic textual similarity (STS) is a fundamental NLP task that measures the semantic similarity between a pair of sentences. In order to reduce the inherent ambiguity posed from the sentences, a recent work called Conditional STS (C-STS) has been proposed to measure the sentences’ similarity conditioned on a certain aspect. Despite the popularity of C-STS, we find that the current C-STS dataset suffers from various issues that could impede proper evaluation on this task. In this paper, we reannotate the C-STS validation set and observe an annotator discrepancy on 55% of the instances resulting from the annotation errors in the original label, ill-defined conditions, and the lack of clarity in the task definition. After a thorough dataset analysis, we improve the C-STS task by leveraging the models’ capability to understand the conditions under a QA task setting. With the generated answers, we present an automatic error identification pipeline that is able to identify annotation errors from the C-STS data with over 80% F1 score. We also propose a new method that largely improves the performance over baselines on the C-STS data by training the models with the answers. Finally we discuss the conditionality annotation based on the typed-feature structure (TFS) of entity types. We show in examples that the TFS is able to provide a linguistic foundation for constructing C-STS data with new conditions.
more »
« less
- Award ID(s):
- 2326985
- PAR ID:
- 10539993
- Publisher / Repository:
- ACL
- Date Published:
- Format(s):
- Medium: X
- Location:
- Bangkok, Thailand
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Given a citation in the body of a research paper, cited text identification aims to find the sentences in the cited paper that are most relevant to the citing sentence. The task is fundamentally one of sentence matching, where affinity is often assessed by a cosine similarity between sentence embeddings. However, (a) sentences may not be well-represented by a single embedding because they contain multiple distinct semantic aspects, and (b) good matches may not require a strong match in all aspects. To overcome these limitations, we propose a simple and efficient unsupervised method for cited text identification that adapts an asymmetric similarity measure to allow partial matches of multiple aspects in both sentences. On the CL-SciSumm dataset we find that our method outperforms a baseline symmetric approach, and, surprisingly, also outperforms all supervised and unsupervised systems submitted to past editions of CL-SciSumm Shared Task 1a.more » « less
-
Traditional sentence embedding models encode sentences into vector representations to capture useful properties such as the semantic similarity between sentences. However, in addition to similarity, sentence semantics can also be interpreted via compositional operations such as sentence fusion or difference. It is unclear whether the compositional semantics of sentences can be directly reflected as compositional operations in the embedding space. To more effectively bridge the continuous embedding and discrete text spaces, we explore the plausibility of incorporating various compositional properties into the sentence embedding space that allows us to interpret embedding transformations as compositional sentence operations. We propose InterSent, an end-to-end framework for learning interpretable sentence embeddings that supports compositional sentence operations in the embedding space. Our method optimizes operator networks and a bottleneck encoder-decoder model to produce meaningful and interpretable sentence embeddings. Experimental results demonstrate that our method significantly improves the interpretability of sentence embeddings on four textual generation tasks over existing approaches while maintaining strong performance on traditional semantic similarity tasks.more » « less
-
null (Ed.)In specific domains, such as procedural scientific text, human labeled data for shallow semantic parsing is especially limited and expensive to create. Fortunately, such specific domains often use rather formulaic writing, such that the different ways of expressing relations in a small number of grammatically similar labeled sentences may provide high coverage of semantic structures in the corpus, through an appropriately rich similarity metric. In light of this opportunity, this paper explores an instance-based approach to the relation prediction sub-task within shallow semantic parsing, in which semantic labels from structurally similar sentences in the training set are copied to test sentences. Candidate similar sentences are retrieved using SciBERT embeddings. For labels where it is possible to copy from a similar sentence we employ an instance level copy network, when this is not possible, a globally shared parametric model is employed. Experiments show our approach outperforms both baseline and prior methods by 0.75 to 3 F1 absolute in the Wet Lab Protocol Corpus and 1 F1 absolute in the Materials Science Procedural Text Corpus.more » « less
-
Learning sentence representations which capture rich semantic meanings has been crucial for many NLP tasks. Pre-trained language models such as BERT have achieved great success in NLP, but sentence embeddings extracted directly from these models do not perform well without fine-tuning. We propose Contrastive Learning of Sentence Representations (CLSR), a novel approach which applies contrastive learning to learn universal sentence representations on top of pre-trained language models. CLSR utilizes semantic similarity of two sentences to construct positive instance for contrastive learning. Semantic information that has been captured by the pre-trained models is kept by getting sentence embeddings from these models with proper pooling strategy. An encoder followed by a linear projection takes these embeddings as inputs and is trained under a contrastive objective. To evaluate the performance of CLSR, we run experiments on a range of pre-trained language models and their variants on a series of Semantic Contextual Similarity tasks. Results show that CLSR gains significant performance improvements over existing SOTA language models.more » « less
An official website of the United States government

