skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Linguistically Conditioned Semantic Textual Similarity
Semantic textual similarity (STS) is a fundamental NLP task that measures the semantic similarity between a pair of sentences. In order to reduce the inherent ambiguity posed from the sentences, a recent work called Conditional STS (C-STS) has been proposed to measure the sentences’ similarity conditioned on a certain aspect. Despite the popularity of C-STS, we find that the current C-STS dataset suffers from various issues that could impede proper evaluation on this task. In this paper, we reannotate the C-STS validation set and observe an annotator discrepancy on 55% of the instances resulting from the annotation errors in the original label, ill-defined conditions, and the lack of clarity in the task definition. After a thorough dataset analysis, we improve the C-STS task by leveraging the models’ capability to understand the conditions under a QA task setting. With the generated answers, we present an automatic error identification pipeline that is able to identify annotation errors from the C-STS data with over 80% F1 score. We also propose a new method that largely improves the performance over baselines on the C-STS data by training the models with the answers. Finally we discuss the conditionality annotation based on the typed-feature structure (TFS) of entity types. We show in examples that the TFS is able to provide a linguistic foundation for constructing C-STS data with new conditions.  more » « less
Award ID(s):
2326985
PAR ID:
10539993
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACL
Date Published:
Format(s):
Medium: X
Location:
Bangkok, Thailand
Sponsoring Org:
National Science Foundation
More Like this
  1. Complex neural network architectures are being increasingly used to learn to compute the semantic resemblances among natural language texts. It is necessary to establish a lower bound of performance that must be met in or- der for new complex architectures to be not only novel, but also worthwhile in terms of implementation. This paper focuses on the specific task of determin- ing semantic textual similarity (STS). We construct a number of models from simple to complex within a framework and report our results. Our findings show that a small number of LSTM stacks with an LSTM stack comparator produces the best results. We use Se- mEval 2017 STS Competition Dataset for evaluation. 
    more » « less
  2. Given a citation in the body of a research paper, cited text identification aims to find the sentences in the cited paper that are most relevant to the citing sentence. The task is fundamentally one of sentence matching, where affinity is often assessed by a cosine similarity between sentence embeddings. However, (a) sentences may not be well-represented by a single embedding because they contain multiple distinct semantic aspects, and (b) good matches may not require a strong match in all aspects. To overcome these limitations, we propose a simple and efficient unsupervised method for cited text identification that adapts an asymmetric similarity measure to allow partial matches of multiple aspects in both sentences. On the CL-SciSumm dataset we find that our method outperforms a baseline symmetric approach, and, surprisingly, also outperforms all supervised and unsupervised systems submitted to past editions of CL-SciSumm Shared Task 1a. 
    more » « less
  3. null (Ed.)
    Inferring the set name of semantically grouped entities is useful in many tasks related to natural language processing and information retrieval. Previous studies mainly draw names from knowledge bases to ensure high quality, but that limits the candidate scope. We propose an unsupervised framework, AutoName, that exploits large-scale text corpora to name a set of query entities. Specifically, it first extracts hypernym phrases as candidate names from query-related documents via probing a pre-trained language model. A hierarchical density-based clustering is then applied to form potential concepts for these candidate names. Finally, AutoName ranks candidates and picks the top one as the set name based on constituents of the phrase and the semantic similarity of their concepts. We also contribute a new benchmark dataset for this task, consisting of 130 entity sets with name labels. Experimental results show that AutoName generates coherent and meaningful set names and significantly outperforms all compared methods. Further analyses show that AutoName is able to offer explanations for extracted names using the sentences most relevant to the corresponding concept. 
    more » « less
  4. null (Ed.)
    Detecting fine-grained differences in content conveyed in different languages matters for cross-lingual NLP and multilingual corpora analysis, but it is a challenging machine learning problem since annotation is expensive and hard to scale. This work improves the prediction and annotation of fine-grained semantic divergences. We introduce a training strategy for multilingual BERT models by learning to rank synthetic divergent examples of varying granularity. We evaluate our models on the Rationalized English-French Semantic Divergences, a new dataset released with this work, consisting of English-French sentence-pairs annotated with semantic divergence classes and token-level rationales. Learning to rank helps detect fine-grained sentence-level divergences more accurately than a strong sentence-level similarity model, while token-level predictions have the potential of further distinguishing between coarse and fine-grained divergences. 
    more » « less
  5. Traditional sentence embedding models encode sentences into vector representations to capture useful properties such as the semantic similarity between sentences. However, in addition to similarity, sentence semantics can also be interpreted via compositional operations such as sentence fusion or difference. It is unclear whether the compositional semantics of sentences can be directly reflected as compositional operations in the embedding space. To more effectively bridge the continuous embedding and discrete text spaces, we explore the plausibility of incorporating various compositional properties into the sentence embedding space that allows us to interpret embedding transformations as compositional sentence operations. We propose InterSent, an end-to-end framework for learning interpretable sentence embeddings that supports compositional sentence operations in the embedding space. Our method optimizes operator networks and a bottleneck encoder-decoder model to produce meaningful and interpretable sentence embeddings. Experimental results demonstrate that our method significantly improves the interpretability of sentence embeddings on four textual generation tasks over existing approaches while maintaining strong performance on traditional semantic similarity tasks. 
    more » « less