Research has shown that student achievement is influenced by their access to, or possession of, various forms of capital. These forms of capital include financial capital, academic capital (prior academic preparation and access to academic support services), cultural capital (the attitudes, knowledge, and behaviors related to education which students are exposed to by members of their family or community), and social capital (the resources students have access to as a result of being members of groups or networks). For community college students, many with high financial need and the first in their families to go to college (especially those from underrepresented minority groups), developing programs to increase access to these various forms of capital is critical to their success. This paper describes how a small federally designated Hispanic-serving community college has developed a scholarship program for financially needy community college students intending to transfer to a four-year institution to pursue a bachelor’s degree in a STEM field. Developed through a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) grant, the program involves a collaboration among STEM faculty, college staff, administrators, student organizations, and partners in industry, four-year institutions, local high schools, and professional organizations. In addition to providing financial support through the scholarships, student access to academic capital is increased through an intensive math review program, tutoring, study groups, supplemental instruction, and research internship opportunities. Access to cultural and social capital is increased by providing scholars with faculty mentors; engaging students with STEM faculty, university researchers, and industry professionals through field trips, summer internships, professional organizations, and student clubs; supporting student and faculty participation at professional conferences, and providing opportunities for students and their families to interact with faculty and staff. The paper details the development of the program, and its impact over the last five years on enhancing the success of STEM students as determined from data on student participation in various program activities, student attitudinal and self-efficacy surveys, and academic performance including persistence, retention, transfer and graduation. 
                        more » 
                        « less   
                    
                            
                            Board 185: “Someone has Invested in Me to Do This": Supporting Low-Income Students to Persist in STEM Through a NSF S-STEM Grant
                        
                    
    
            Funded by the National Science Foundation, the S-STEM project, STEM CONNECT (Award No. 1930211) involves a partnership among three institutions (including one bachelor’s degree-awarding and two associate’s degree-awarding institutions) aimed at supporting cohorts of low-income, high achieving students (“Scholars”) to succeed in obtaining a STEM degree that emphasizes computer science and mathematics. The project is particularly interested in supporting women, underrepresented minorities, first generation students, transfer students, and rural students. The project uses a variety of mechanisms to support Scholars, including providing academic support through tutoring, connecting Scholars with faculty and peer mentors, developing community-building activities (e.g., Puzzle Hunts, documentary viewings), and providing career development activities (e.g., tours of local engineering and technology businesses). In this poster session, we present an analysis of data on students’ academic progress (e.g., grades, graduation rates) and STEM work experiences (e.g., internships, research opportunities) as well as a qualitative analysis of student interview data to describe to what extent and how project structures and activities have helped Scholars to persist in their selected STEM majors and STEM career pathways. Specifically, we conducted a qualitative thematic analysis of data from student focus groups held over a period of three years (three in Spring 2021, nine in Spring 2022, and eight in Spring 2023), during which Scholars were asked to reflect on and evaluate components of the project, as well as interviews with five women Scholars about their experiences. We used theories of capital (e.g., social capital theory, Yosso’s cultural wealth model) to aid in the development of themes. Overall, Scholars valued the extent to which the project invested in their educational and professional success. Major themes highlight the importance of mentors, positioning Scholars as STEM professionals, and academic support structures in increasing Scholars’ sense of belonging and desire to persist in STEM. Mentors were shown to play a critical role in a.) supporting times of transition (e.g., transitioning from applied to proof-based courses, transitioning from small class sizes at a community college to large enrollment courses at a bachelor’s degree-awarding institution) b.) helping Scholars get “a foot in the door” to obtain relevant work experiences and c.) assisting students in navigating academic structures perceived as barriers to their academic pathway. Scholars also valued project opportunities that allowed students to envision themselves as professionals (e.g., through speakers who talked about their professional journey, by interacting with “like-minded peers” that have similar “goals and drives”) and that positioned Scholars as professionals (e.g., by inviting Scholars to serve as panelists at local events, by giving students funding to attend a STEM conference). Further, Scholars appreciated the project’s efforts to enroll scholars in the same sections of courses, as Scholars saw the value in being able to collaborate with peers that they know. Finally, an overarching theme from these data was that project structures and activities were often successful because they built upon the assets (e.g., aspirations) that Scholars brought with them to college. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1930211
- PAR ID:
- 10540173
- Publisher / Repository:
- ASEE Conferences
- Date Published:
- Subject(s) / Keyword(s):
- persistence, social capital, cultural wealth, S-STEM
- Format(s):
- Medium: X
- Location:
- Portland, Oregon
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            IRE STEM Scholars program contributes to the national need for well-educated STEM professionals by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students. The IRE STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with a Bachelor of Science degree in engineering and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce; it is during this semester that students receive the S-STEM scholarship. During the last two years of their education, IRE students work in paid engineering co-ops, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project financially supports low-income students during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project provides personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and subjective wellbeing (or mental and physical health). This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? Currently in its second year, the project has supported 20 students, including 6 students on co-op. These six students have been interviewed on their sense of belonging in engineering during their co-op experiences, and have provided multiple survey data points describing IRE students’ experiences in co-op and overall sense of belonging. These IRE STEM Scholars program participant-specific data along with survey data documenting the co-op experiences of all IRE students describe how co-op experiences can be used to provide a financially responsible pathway to an engineering degree for low-income, high achieving students. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students.more » « less
- 
            null (Ed.)This paper provides detailed information for a poster that will be presented in the National Science Foundation (NSF) Grantees Poster Session during the 2020 ASEE Annual Conference & Exposition. The poster describes the progress and the state of an NSF Scholarships in Science, Technology, Engineering, and Math (S-STEM) project. The objectives of this project are to 1) enhance student learning by providing access to extra- and co-curricular experiences, 2) create a positive student experience through mentorship, and 3) ensure successful student placement in the STEM workforce or graduate school. S-STEM Scholars supported by this program receive financial, academic, professional, and social development via various evidence-based activities integrated throughout their four-year undergraduate degrees beginning during the summer prior to starting at the University. The paper describes the characteristics (demographics, high school GPA, ACT/SAT scores, etc.) of the Scholars supported by the S-STEM grant. The paper also provides information about the completed tasks of the project to date. The completed tasks include a system for recruiting academically talented and economically disadvantaged students, a Summer Bridge Program (SBP), a first semester introductory engineering course, and a system to recruit and maintain faculty mentors. The ongoing tasks include the execution of a service learning project course and a system for recruiting industry mentors. This paper reports detailed assessment and evaluation data about different project tasks and the academic success metrics of the Scholars. It also lists a set of recommendations based on the lessons learned in this S-STEM project.more » « less
- 
            This project will contribute to the national need for well-educated scientists, mathematicians, engineers, and technicians by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students who are pursuing Bachelor of Science degrees in engineering. First semester junior, primarily transfer, students at Iron Range Engineering will receive scholarships for one semester. The Iron Range Engineering (IRE) STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with an engineering degree and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce. During the last two years of their education, IRE students work in industry, earning an engineering intern salary, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project will provide access to a financially responsible engineering degree for low-income students by financially supporting them during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project will provide personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. By providing these supports, the IRE STEM Scholars project aims to prepare students to be competitive applicants for the engineering workforce with career development and engineering co-op experience. Because community colleges draw relatively representative proportions of students from a variety of backgrounds, this project has the potential to learn how transfer pathways and co-op education can support financially sustainable pathways to engineering degrees for a more diverse group of students and contribute to the development of a diverse, competitive engineering workforce. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates with demonstrated financial need. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and overall wellbeing (or mental and physical health). Student outcomes have previously been measured primarily through academic markers such as graduation rates and GPA. In addition to these outcomes, this project explores ways to better support overall student thriving. This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? In the first year of the IRE STEM Scholars Project, initial interview data describe scholars’ sense of belonging in engineering, prior to their first co-op experiences and survey data describe IRE students’ experiences in co-op and overall sense of belonging. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students.more » « less
- 
            While many institutions are focusing on increasing STEM belonging for students, we argue that supporting faculty will increase STEM belonging and build social capital, which is vital for career growth and collaboration, creating stability for student success. Faculty at small and large institutions may struggle to find a community of STEM professionals where they feel they belong. Faculty members may struggle with the lack of connections to others in their field and miss out on support that helps them succeed in their careers. When faculty lack support, they may even leave an institution because of failure to get promotion or tenure. This in turn causes problems for students relying on the faculty for guidance and identity. We contend that the improvement science initiatives and other activities of the First2 Network, an NSF funded project, build connections in the STEM community in WV, help STEM students persist in their given field and build STEM belonging and social capital for the faculty members involved. Thus, providing a more stable environment for students to flourish. We surveyed faculty and found that the First2 Network had a positive influence on faculty members’ STEM Belonging, and on their development of social capital to further their academic careers. The faculty also provided examples of how their participation in improvement science work has contributed to their professional growth and benefited students at their institution.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    