Abstract The absence or presence of a lunar paleomagnetosphere is important because it bears directly on the volatile content of the regolith and exploration targets for Artemis and other missions to the Moon. Recent paleointensity study of samples from the Apollo missions has readdressed this question. Multiple specimens from a young 2-million-year-old glass shows a strong magnetization compatible with that induced by charge-separation in an impact plasma, whereas paleointensities of single crystals yield evidence for null magnetizations spanning 3.9 to 3.2 Ga. Together, these data are consistent with an impact mechanism for the magnetization of some lunar samples, and absence of a long-lived lunar core dynamo and paleomagnetosphere recorded in other samples. Here, we present a dataset that allows researchers to examine replicates of these measurements. For the glass, we present data from specimens that fail standard paleointensity selection criteria but nevertheless imply a complex, changing magnetic field environment. For the single crystals, the replicate measurements further illustrate the initial zero magnetization state of these materials.
more »
« less
A lunar core dynamo limited to the Moon’s first ~140 million years
Abstract Single crystal paleointensity (SCP) reveals that the Moon lacked a long-lived core dynamo, though mysteries remain. An episodic dynamo, seemingly recorded by some Apollo basalts, is temporally and energetically problematic. We evaluate this enigma through study of ~3.7 billion-year-old (Ga) Apollo basalts 70035 and 75035. Whole rock analyses show unrealistically high nominal magnetizations, whereas SCP indicate null fields, illustrating that the former do not record an episodic dynamo. However, deep crustal magnetic anomalies might record an early lunar dynamo. SCP studies of 3.97 Ga Apollo breccia 61016 and 4.36 Ga ferroan anorthosite 60025 also yield null values, constraining any core dynamo to the Moon’s first 140 million years. These findings suggest that traces of Earth’s Hadean atmosphere, transferred to the Moon lacking a magnetosphere, could be trapped in the buried lunar regolith, presenting an exceptional target for future exploration.
more »
« less
- PAR ID:
- 10540337
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Earth & Environment
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2662-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Determining the presence or absence of a past long-lived lunar magnetic field is crucial for understanding how the Moon’s interior and surface evolved. Here, we show that Apollo impact glass associated with a young 2 million–year–old crater records a strong Earth-like magnetization, providing evidence that impacts can impart intense signals to samples recovered from the Moon and other planetary bodies. Moreover, we show that silicate crystals bearing magnetic inclusions from Apollo samples formed at ∼3.9, 3.6, 3.3, and 3.2 billion years ago are capable of recording strong core dynamo–like fields but do not. Together, these data indicate that the Moon did not have a long-lived core dynamo. As a result, the Moon was not sheltered by a sustained paleomagnetosphere, and the lunar regolith should hold buried 3 He, water, and other volatile resources acquired from solar winds and Earth’s magnetosphere over some 4 billion years.more » « less
-
Abstract The Moon generated a long‐lived core dynamo magnetic field, with intensities at least episodically reaching ∼10–100 μT during the period prior to ∼3.56 Ga. While magnetic anomalies observed within impact basins are likely attributable to the presence of impactor‐added metal, other anomalies such as those associated with lunar swirls are not as conclusively linked to exogenic materials. This has led to the hypothesis that some anomalies may be related to magmatic features such as dikes, sills, and laccoliths. However, basalts returned from the Apollo missions are magnetized too weakly to produce the required magnetization intensities (>0.5 A/m). Here, we test the hypothesis that subsolidus reduction of ilmenite within or adjacent to slowly cooled mafic intrusive bodies could locally enhance metallic FeNi contents within the lunar crust. We find that reduction within hypabyssal dikes with high‐Ti or low‐Ti mare basalt compositions can produce sufficient FeNi grains to carry the minimum >0.5 A/m magnetization intensity inferred for swirls, especially if ambient fields are >10 μT or if fine‐grained Fe‐Ni metals in the pseudo‐single domain grain size range are formed. Therefore, there exists a possibility that certain magnetic anomalies exhibiting various shapes such as linear, swarms, and elliptical patterns may be magmatic in origin. Our study highlights that the domain state of the magnetic carriers is an under‐appreciated factor in controlling a rock's magnetization intensity. The results of this study will help guide interpretations of lunar crustal field data acquired by future rovers that will traverse lunar magnetic anomalies.more » « less
-
Abstract Lunar paleomagnetic studies have identified multidomain metallic Fe–Ni alloys as the dominant magnetic contributors in mare basalts. Here, we explore the low‐temperature magnetic behavior of standard samples for a suite of opaque minerals that occur within mare basalts (single‐domain and multidomain Fe, wüstite, ulvöspinel, iron chromite, ilmenite, and troilite). We compare the observed low‐temperature behaviors to those of several Apollo mare basalt samples (10003, 10044, 10020, 10069, 10071, 12009, 12022, 15597). Notable magnetic transitions were detected at 30 K (ilmenite), 60–80 K (chromite, troilite), and 100–125 K (ulvöspinel, chromite). We also investigated the effects of low‐temperature cycling on mare basalt remanence and observed that only grains with coercivities 20–40 mT were cleaned. This suggests a minimal impact of diurnal temperature cycling at the lunar surface on the retrieved lunar paleointensity values. Using comprehensive electron microscopy techniques, including scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), wavelength dispersive spectroscopy (WDS), x‐ray diffraction, and transmission electron microscopy (TEM), we further examined magnetic phases within four Apollo 11 mare basalt samples. Our findings revealed the presence of Fe grains (one to 10 μm in diameter) associated with troilite contain sub‐grains ranging in size from tens to hundreds of nanometers in some samples. These grains, which fall within the single‐domain to multi‐domain range as observed in their first‐order reversal curves, might have the potential to retain high coercivity components and thereby effectively record an ancient dynamo field.more » « less
-
Abstract Internal structures of the Moon are key to understanding the origin and evolution of the Earth–Moon system and other planets. The Apollo Passive Seismic Experiment detected thousands of lunar seismic events and vastly improved our understanding of the Moon’s interior. However, some critical questions like the state and composition of the core remain unsolved largely due to the sparsity of the Apollo seismic stations and the strong scattering of seismic waves in the top layer of the Moon. In this study, we propose the concept of a fiber seismic network on the Moon and discuss its potential in overcoming the challenges in imaging deep Moon structures. As an emerging technique, distributed acoustic sensing (DAS) can provide a cost-efficient solution for large-aperture and dense seismic network deployment in harsh environments. We compute lunar synthetic seismograms and evaluate the performance of DAS arrays of different configurations in retrieving the hidden core reflected seismic phase ScS from the strong scattered waves. We find that, compared to a sparse conventional seismic network, a fiber seismic network using tens of kilometers of cable can dramatically increase the chance of observing clear ScS by array stacking. Our results indicate that DAS could provide new opportunities for the future lunar seismic surveys, but more efforts and further evaluations are required to develop a space-proof DAS.more » « less
An official website of the United States government
