skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fitness Landscapes and Evolution of Catalytic RNA
The relationship between genotype and phenotype, or the fitness landscape, is the foundation of genetic engineering and evolution. However, mapping fitness landscapes poses a major technical challenge due to the amount of quantifiable data that is required. Catalytic RNA is a special topic in the study of fitness landscapes due to its relatively small sequence space combined with its importance in synthetic biology. The combination of in vitro selection and high-throughput sequencing has recently provided empirical maps of both complete and local RNA fitness landscapes, but the astronomical size of sequence space limits purely experimental investigations. Next steps are likely to involve data-driven interpolation and extrapolation over sequence space using various machine learning techniques. We discuss recent progress in understanding RNA fitness landscapes, particularly with respect to protocells and machine representations of RNA. The confluence of technical advances may significantly impact synthetic biology in the near future.  more » « less
Award ID(s):
2318736 1935087
PAR ID:
10540386
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Annual Reviews of Biophysics
Date Published:
Journal Name:
Annual Review of Biophysics
Volume:
53
Issue:
1
ISSN:
1936-122X
Page Range / eLocation ID:
109 to 125
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ribozymes are RNA molecules that catalyze biochemical reactions. Self-cleaving ribozymes are a common naturally occurring class of ribozymes that catalyze site-specific cleavage of their own phosphodiester backbone. In addition to their natural functions, self-cleaving ribozymes have been used to engineer control of gene expression because they can be designed to alter RNA processing and stability. However, the rational design of ribozyme activity remains challenging, and many ribozyme-based systems are engineered or improved by random mutagenesis and selection ( in vitro evolution). Improving a ribozyme-based system often requires several mutations to achieve the desired function, but extensive pairwise and higher-order epistasis prevent a simple prediction of the effect of multiple mutations that is needed for rational design. Recently, high-throughput sequencing-based approaches have produced data sets on the effects of numerous mutations in different ribozymes (RNA fitness landscapes). Here we used such high-throughput experimental data from variants of the CPEB3 self-cleaving ribozyme to train a predictive model through machine learning approaches. We trained models using either a random forest or long short-term memory (LSTM) recurrent neural network approach. We found that models trained on a comprehensive set of pairwise mutant data could predict active sequences at higher mutational distances, but the correlation between predicted and experimentally observed self-cleavage activity decreased with increasing mutational distance. Adding sequences with increasingly higher numbers of mutations to the training data improved the correlation at increasing mutational distances. Systematically reducing the size of the training data set suggests that a wide distribution of ribozyme activity may be the key to accurate predictions. Because the model predictions are based only on sequence and activity data, the results demonstrate that this machine learning approach allows readily obtainable experimental data to be used for RNA design efforts even for RNA molecules with unknown structures. The accurate prediction of RNA functions will enable a more comprehensive understanding of RNA fitness landscapes for studying evolution and for guiding RNA-based engineering efforts. 
    more » « less
  2. Fitness landscapes are models of the sequence space of a genetic element that map how each sequence corresponds to its activity and can be used to guide laboratory evolution. The ribosome is a macromolecular machine that is essential for protein synthesis in all organisms. Because of the prevalence of dominant lethal mutations, a comprehensive fitness landscape of the ribosomal peptidyl transfer center (PTC) has not yet been attained. Here, we develop a method to functionally map an orthogonal tethered ribosome (oRiboT), which permits complete mutagenesis of nucleotides located in the PTC and the resulting epistatic interactions. We found that most nucleotides studied showed flexibility to mutation, and identified epistatic interactions between them, which compensate for deleterious mutations. This work provides a basis for a deeper understanding of ribosome function and malleability and could be used to inform design of engineered ribosomes with applications to synthesize next-generation biomaterials and therapeutics. 
    more » « less
  3. The course of evolution is strongly shaped by interaction between mutations. Such epistasis can yield rugged sequence–function maps and constrain the availability of adaptive paths. While theoretical intuition is often built on global statistics of large, homogeneous model landscapes, mutagenesis measurements necessarily probe a limited neighborhood of a reference genotype. It is unclear to what extent local topography of a real epistatic landscape represents its global shape. Here, we demonstrate that epistatic landscapes can be heterogeneously rugged and this heterogeneity may render biomolecules more evolvable. By characterizing a multipeaked fitness landscape of a SARS-CoV-2 antibody mutant library, we show that heterogeneous ruggedness arises from sparse epistatic hotspots, whose mutation impacts the fitness effect of numerous sequence sites. Surprisingly, mutating an epistatic hotspot may enhance, rather than reduce, the accessibility of the fittest genotype, while increasing the overall ruggedness. Further, migratory constraints in real space alleviate mutational constraints in sequence space, which not only diversify direct paths taken but may also turn a road-blocking fitness peak into a stepping stone leading toward the global optimum. Our results suggest that a hierarchy of epistatic hotspots may organize the fitness landscape in such a way that path-orienting ruggedness confers global smoothness. 
    more » « less
  4. Abstract We explore sequence determinants of enzyme activity and specificity in a major enzyme family of terpene synthases. Most enzymes in this family catalyze reactions that produce cyclic terpenes—complex hydrocarbons widely used by plants and insects in diverse biological processes such as defense, communication, and symbiosis. To analyze the molecular mechanisms of emergence of terpene cyclization, we have carried out in-depth examination of mutational space around (E)-β-farnesene synthase, an Artemisia annua enzyme which catalyzes production of a linear hydrocarbon chain. Each mutant enzyme in our synthetic libraries was characterized biochemically, and the resulting reaction rate data were used as input to the Michaelis–Menten model of enzyme kinetics, in which free energies were represented as sums of one-amino-acid contributions and two-amino-acid couplings. Our model predicts measured reaction rates with high accuracy and yields free energy landscapes characterized by relatively few coupling terms. As a result, the Michaelis–Menten free energy landscapes have simple, interpretable structure and exhibit little epistasis. We have also developed biophysical fitness models based on the assumption that highly fit enzymes have evolved to maximize the output of correct products, such as cyclic products or a specific product of interest, while minimizing the output of byproducts. This approach results in nonlinear fitness landscapes that are considerably more epistatic. Overall, our experimental and computational framework provides focused characterization of evolutionary emergence of novel enzymatic functions in the context of microevolutionary exploration of sequence space around naturally occurring enzymes. 
    more » « less
  5. Zhang, Jianzhi (Ed.)
    Abstract Fitness landscapes of protein and RNA molecules can be studied experimentally using high-throughput techniques to measure the functional effects of numerous combinations of mutations. The rugged topography of these molecular fitness landscapes is important for understanding and predicting natural and experimental evolution. Mutational effects are also dependent upon environmental conditions, but the effects of environmental changes on fitness landscapes remains poorly understood. Here, we investigate the changes to the fitness landscape of a catalytic RNA molecule while changing a single environmental variable that is critical for RNA structure and function. Using high-throughput sequencing of in vitro selections, we mapped a fitness landscape of the Azoarcus group I ribozyme under eight different concentrations of magnesium ions (1–48 mM MgCl2). The data revealed the magnesium dependence of 16,384 mutational neighbors, and from this, we investigated the magnesium induced changes to the topography of the fitness landscape. The results showed that increasing magnesium concentration improved the relative fitness of sequences at higher mutational distances while also reducing the ruggedness of the mutational trajectories on the landscape. As a result, as magnesium concentration was increased, simulated populations evolved toward higher fitness faster. Curve-fitting of the magnesium dependence of individual ribozymes demonstrated that deep sequencing of in vitro reactions can be used to evaluate the structural stability of thousands of sequences in parallel. Overall, the results highlight how environmental changes that stabilize structures can also alter the ruggedness of fitness landscapes and alter evolutionary processes. 
    more » « less