skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 14, 2026

Title: Epistatic hotspots organize antibody fitness landscape and boost evolvability
The course of evolution is strongly shaped by interaction between mutations. Such epistasis can yield rugged sequence–function maps and constrain the availability of adaptive paths. While theoretical intuition is often built on global statistics of large, homogeneous model landscapes, mutagenesis measurements necessarily probe a limited neighborhood of a reference genotype. It is unclear to what extent local topography of a real epistatic landscape represents its global shape. Here, we demonstrate that epistatic landscapes can be heterogeneously rugged and this heterogeneity may render biomolecules more evolvable. By characterizing a multipeaked fitness landscape of a SARS-CoV-2 antibody mutant library, we show that heterogeneous ruggedness arises from sparse epistatic hotspots, whose mutation impacts the fitness effect of numerous sequence sites. Surprisingly, mutating an epistatic hotspot may enhance, rather than reduce, the accessibility of the fittest genotype, while increasing the overall ruggedness. Further, migratory constraints in real space alleviate mutational constraints in sequence space, which not only diversify direct paths taken but may also turn a road-blocking fitness peak into a stepping stone leading toward the global optimum. Our results suggest that a hierarchy of epistatic hotspots may organize the fitness landscape in such a way that path-orienting ruggedness confers global smoothness.  more » « less
Award ID(s):
2146581 2225947
PAR ID:
10612583
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
122
Issue:
2
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zhang, Jianzhi (Ed.)
    Abstract Fitness landscapes of protein and RNA molecules can be studied experimentally using high-throughput techniques to measure the functional effects of numerous combinations of mutations. The rugged topography of these molecular fitness landscapes is important for understanding and predicting natural and experimental evolution. Mutational effects are also dependent upon environmental conditions, but the effects of environmental changes on fitness landscapes remains poorly understood. Here, we investigate the changes to the fitness landscape of a catalytic RNA molecule while changing a single environmental variable that is critical for RNA structure and function. Using high-throughput sequencing of in vitro selections, we mapped a fitness landscape of the Azoarcus group I ribozyme under eight different concentrations of magnesium ions (1–48 mM MgCl2). The data revealed the magnesium dependence of 16,384 mutational neighbors, and from this, we investigated the magnesium induced changes to the topography of the fitness landscape. The results showed that increasing magnesium concentration improved the relative fitness of sequences at higher mutational distances while also reducing the ruggedness of the mutational trajectories on the landscape. As a result, as magnesium concentration was increased, simulated populations evolved toward higher fitness faster. Curve-fitting of the magnesium dependence of individual ribozymes demonstrated that deep sequencing of in vitro reactions can be used to evaluate the structural stability of thousands of sequences in parallel. Overall, the results highlight how environmental changes that stabilize structures can also alter the ruggedness of fitness landscapes and alter evolutionary processes. 
    more » « less
  2. The relationship between genotype and phenotype, or the fitness landscape, is the foundation of genetic engineering and evolution. However, mapping fitness landscapes poses a major technical challenge due to the amount of quantifiable data that is required. Catalytic RNA is a special topic in the study of fitness landscapes due to its relatively small sequence space combined with its importance in synthetic biology. The combination of in vitro selection and high-throughput sequencing has recently provided empirical maps of both complete and local RNA fitness landscapes, but the astronomical size of sequence space limits purely experimental investigations. Next steps are likely to involve data-driven interpolation and extrapolation over sequence space using various machine learning techniques. We discuss recent progress in understanding RNA fitness landscapes, particularly with respect to protocells and machine representations of RNA. The confluence of technical advances may significantly impact synthetic biology in the near future. 
    more » « less
  3. Fitness landscapes are models of the sequence space of a genetic element that map how each sequence corresponds to its activity and can be used to guide laboratory evolution. The ribosome is a macromolecular machine that is essential for protein synthesis in all organisms. Because of the prevalence of dominant lethal mutations, a comprehensive fitness landscape of the ribosomal peptidyl transfer center (PTC) has not yet been attained. Here, we develop a method to functionally map an orthogonal tethered ribosome (oRiboT), which permits complete mutagenesis of nucleotides located in the PTC and the resulting epistatic interactions. We found that most nucleotides studied showed flexibility to mutation, and identified epistatic interactions between them, which compensate for deleterious mutations. This work provides a basis for a deeper understanding of ribosome function and malleability and could be used to inform design of engineered ribosomes with applications to synthesize next-generation biomaterials and therapeutics. 
    more » « less
  4. Abstract A major challenge in evolutionary biology is explaining how populations navigate rugged fitness landscapes without getting trapped on local optima. One idea illustrated by adaptive dynamics theory is that as populations adapt, their newly enhanced capacities to exploit resources alter fitness payoffs and restructure the landscape in ways that promote speciation by opening new adaptive pathways. While there have been indirect tests of this theory, to our knowledge none have measured how fitness landscapes deform during adaptation, or test whether these shifts promote diversification. Here, we achieve this by studying bacteriophage$$\lambda$$ λ , a virus that readily speciates into co-existing receptor specialists under controlled laboratory conditions. We use a high-throughput gene editing-phenotyping technology to measure$$\lambda$$ λ ’s fitness landscape in the presence of different evolved-$$\lambda$$ λ competitors and find that the fitness effects of individual mutations, and their epistatic interactions, depend on the competitor. Using these empirical data, we simulate$$\lambda$$ λ ’s evolution on an unchanging landscape and one that recapitulates how the landscape deforms during evolution.$$\lambda$$ λ heterogeneity only evolves in the shifting landscape regime. This study provides a test of adaptive dynamics, and, more broadly, shows how fitness landscapes dynamically change during adaptation, potentiating phenomena like speciation by opening new adaptive pathways. 
    more » « less
  5. Gallicchio, Emilio (Ed.)
    The rapid evolution of HIV is constrained by interactions between mutations which affect viral fitness. In this work, we explore the role of epistasis in determining the mutational fitness landscape of HIV for multiple drug target proteins, including Protease, Reverse Transcriptase, and Integrase. Epistatic interactions between residues modulate the mutation patterns involved in drug resistance, with unambiguous signatures of epistasis best seen in the comparison of the Potts model predicted and experimental HIV sequence “prevalences” expressed as higher-order marginals (beyond triplets) of the sequence probability distribution. In contrast, experimental measures of fitness such as viral replicative capacities generally probe fitness effects of point mutations in a single background, providing weak evidence for epistasis in viral systems. The detectable effects of epistasis are obscured by higher evolutionary conservation at sites. While double mutant cycles in principle, provide one of the best ways to probe epistatic interactions experimentally without reference to a particular background, we show that the analysis is complicated by the small dynamic range of measurements. Overall, we show that global pairwise interaction Potts models are necessary for predicting the mutational landscape of viral proteins. 
    more » « less