skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Asymptotic Dynamics for Delayed Feature Learning in a Toy Model
We consider a toy model that exhibits grokking, recently advanced by [Kumar et al, 2023], and take advantage of the simple setting to derive the dynamics of the train and test loss using Dynamical Mean Field Theory (DMFT). This gives a closed-form expression for the gap between train and test loss that characterizes grokking in this toy model, illustrating how two parameters of interest -- NTK alignment and network laziness -- control the size of this gap and how grokking emerges as a uniquely offline property during repeated training over the same dataset. This is the first quantitative characterization of grokking dynamics in a general setting that makes no assumptions about weight decay, weight norm, etc.  more » « less
Award ID(s):
2239780 2134157
PAR ID:
10540410
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
High-dimensional Learning Dynamics 2024: The Emergence of Structure and Reasoning at ICML 2024
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pre-trained deep neural networks (DNNs) are being widely deployed by industry for making business decisions and to serve users; however, a major problem is model decay, where the DNN's predictions become more erroneous over time, resulting in revenue loss or unhappy users. To mitigate model decay, DNNs are retrained from scratch using old and new data. This is computationally expensive, so retraining happens only once performance significantly decreases. Here, we study how continual learning (CL) could potentially overcome model decay in large pre-trained DNNs and greatly reduce computational costs for keeping DNNs up-to-date. We identify the "stability gap" as a major obstacle in our setting. The stability gap refers to a phenomenon where learning new data causes large drops in performance for past tasks before CL mitigation methods eventually compensate for this drop. We test two hypotheses to investigate the factors influencing the stability gap and identify a method that vastly reduces this gap. In large-scale experiments for both easy and hard CL distributions (e.g., class incremental learning), we demonstrate that our method reduces the stability gap and greatly increases computational efficiency. Our work aligns CL with the goals of the production setting, where CL is needed for many applications. 
    more » « less
  2. How much can you say about the gradient of a neural network without computing a loss or knowing the label? This may sound like a strange question: surely the answer is “very little.” However, in this paper, we show that gradients are more structured than previously thought. Gradients lie in a predictable low-dimensional subspace which depends on the network architecture and incoming features. Exploiting this structure can significantly improve gradient-free optimization schemes based on directional derivatives, which have struggled to scale beyond small networks trained on toy datasets. We study how to narrow the gap in optimization performance between methods that calculate exact gradients and those that use directional derivatives. Furthermore, we highlight new challenges in overcoming the large gap between optimizing with exact gradients and guessing the gradients. 
    more » « less
  3. We categorize meta-learning evaluation into two settings: in-distribution [ID], in which the train and test tasks are sampled iid from the same underlying task distribution, and out-of-distribution [OOD], in which they are not. While most meta-learning theory and some FSL applications follow the ID setting, we identify that most existing few-shot classification benchmarks instead reflect OOD evaluation, as they use disjoint sets of train (base) and test (novel) classes for task generation. This discrepancy is problematic because -- as we show on numerous benchmarks -- meta-learning methods that perform better on existing OOD datasets may perform significantly worse in the ID setting. In addition, in the OOD setting, even though current FSL benchmarks seem befitting, our study highlights concerns in 1) reliably performing model selection for a given meta-learning method, and 2) consistently comparing the performance of different methods. To address these concerns, we provide suggestions on how to construct FSL benchmarks to allow for ID evaluation as well as more reliable OOD evaluation. Our work aims to inform the meta-learning community about the importance and distinction of ID vs. OOD evaluation, as well as the subtleties of OOD evaluation with current benchmarks. 
    more » « less
  4. Transformer models have achieved remarkable empirical successes, largely due to their in-context learning capabilities. Inspired by this, we explore training an autoregressive transformer for in-context reinforcement learning (ICRL). In this setting, we initially train a transformer on an offline dataset consisting of trajectories collected from various RL tasks, and then fix and use this transformer to create an action policy for new RL tasks. Notably, we consider the setting where the offline dataset contains trajectories sampled from suboptimal behavioral policies. In this case, standard autoregressive training corresponds to imitation learning and results in suboptimal performance. To address this, we propose the Decision Importance Transformer (DIT) framework, which emulates the actor-critic algorithm in an in-context manner. In particular, we first train a transformer-based value function that estimates the advantage functions of the behavior policies that collected the suboptimal trajectories. Then we train a transformer-based policy via a weighted maximum likelihood estimation loss, where the weights are constructed based on the trained value function to steer the suboptimal policies to the optimal ones. We conduct extensive experiments to test the performance of DIT on both bandit and Markov Decision Process problems. Our results show that DIT achieves superior performance, particularly when the offline dataset contains suboptimal historical data. 
    more » « less
  5. In many applications, multiple parties have private data regarding the same set of users but on disjoint sets of attributes, and a server wants to leverage the data to train a model. To enable model learning while protecting the privacy of the data subjects, we need vertical federated learning (VFL) techniques, where the data parties share only information for training the model, instead of the private data. However, it is challenging to ensure that the shared information maintains privacy while learning accurate models. To the best of our knowledge, the algorithm proposed in this paper is the first practical solution for differentially private vertical federatedk-means clustering, where the server can obtain a set of global centers with a provable differential privacy guarantee. Our algorithm assumes an untrusted central server that aggregates differentially private local centers and membership encodings from local data parties. It builds a weighted grid as the synopsis of the global dataset based on the received information. Final centers are generated by running anyk-means algorithm on the weighted grid. Our approach for grid weight estimation uses a novel, light-weight, and differentially private set intersection cardinality estimation algorithm based on the Flajolet-Martin sketch. To improve the estimation accuracy in the setting with more than two data parties, we further propose a refined version of the weights estimation algorithm and a parameter tuning strategy to reduce the finalk-means loss to be close to that in the central private setting. We provide theoretical utility analysis and experimental evaluation results for the cluster centers computed by our algorithm and show that our approach performs better both theoretically and empirically than the two baselines based on existing techniques 
    more » « less