skip to main content


Title: Two Sides of Meta-Learning Evaluation: In vs. Out of Distribution
We categorize meta-learning evaluation into two settings: in-distribution [ID], in which the train and test tasks are sampled iid from the same underlying task distribution, and out-of-distribution [OOD], in which they are not. While most meta-learning theory and some FSL applications follow the ID setting, we identify that most existing few-shot classification benchmarks instead reflect OOD evaluation, as they use disjoint sets of train (base) and test (novel) classes for task generation. This discrepancy is problematic because -- as we show on numerous benchmarks -- meta-learning methods that perform better on existing OOD datasets may perform significantly worse in the ID setting. In addition, in the OOD setting, even though current FSL benchmarks seem befitting, our study highlights concerns in 1) reliably performing model selection for a given meta-learning method, and 2) consistently comparing the performance of different methods. To address these concerns, we provide suggestions on how to construct FSL benchmarks to allow for ID evaluation as well as more reliable OOD evaluation. Our work aims to inform the meta-learning community about the importance and distinction of ID vs. OOD evaluation, as well as the subtleties of OOD evaluation with current benchmarks.  more » « less
Award ID(s):
1838017
NSF-PAR ID:
10311654
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Out-of-distribution (OOD) testing is increasingly popular for evaluating a machine learning system's ability to generalize beyond the biases of a training set. OOD benchmarks are designed to present a different joint distribution of data and labels between training and test time. VQA-CP has become the standard OOD benchmark for visual question answering, but we discovered three troubling practices in its current use. First, most published methods rely on explicit knowledge of the construction of the OOD splits. They often rely on ``inverting'' the distribution of labels, e.g. answering mostly 'yes' when the common training answer is 'no'. Second, the OOD test set is used for model selection. Third, a model's in-domain performance is assessed after retraining it on in-domain splits (VQA v2) that exhibit a more balanced distribution of labels. These three practices defeat the objective of evaluating generalization, and put into question the value of methods specifically designed for this dataset. We show that embarrassingly-simple methods, including one that generates answers at random, surpass the state of the art on some question types. We provide short- and long-term solutions to avoid these pitfalls and realize the benefits of OOD evaluation. 
    more » « less
  2. Generalizing from observed to new related environments (out-of-distribution) is central to the reliability of classifiers. However, most classifiers fail to predict label from input when the change in environment is due a (stochastic) input transformation not observed in training, as in training we observe , where is a hidden variable. This work argues that when the transformations in train and test are (arbitrary) symmetry transformations induced by a collection of known equivalence relations, the task of finding a robust OOD classifier can be defined as finding the simplest causal model that defines a causal connection between the target labels and the symmetry transformations that are associated with label changes. We then propose a new learning paradigm, asymmetry learning, that identifies which symmetries the classifier must break in order to correctly predict in both train and test. Asymmetry learning performs a causal model search that, under certain identifiability conditions, finds classifiers that perform equally well in-distribution and out-of-distribution. Finally, we show how to learn counterfactually-invariant representations with asymmetry learning in two physics tasks. 
    more » « less
  3. Generalizing from observed to new related environments (out-of-distribution) is central to the reliability of classifiers. However, most classifiers fail to predict label from input when the change in environment is due a (stochastic) input transformation not observed in training, as in training we observe , where is a hidden variable. This work argues that when the transformations in train and test are (arbitrary) symmetry transformations induced by a collection of known equivalence relations, the task of finding a robust OOD classifier can be defined as finding the simplest causal model that defines a causal connection between the target labels and the symmetry transformations that are associated with label changes. We then propose a new learning paradigm, asymmetry learning, that identifies which symmetries the classifier must break in order to correctly predict in both train and test. Asymmetry learning performs a causal model search that, under certain identifiability conditions, finds classifiers that perform equally well in-distribution and out-of-distribution. Finally, we show how to learn counterfactually-invariant representations with asymmetry learning in two physics tasks. 
    more » « less
  4. null (Ed.)
    While progress has been made on the visual question answering leaderboards, models often utilize spurious correlations and priors in datasets under the i.i.d. setting. As such, evaluation on out-of-distribution (OOD) test samples has emerged as a proxy for generalization. In this paper, we present \textit{MUTANT}, a training paradigm that exposes the model to perceptually similar, yet semantically distinct \textit{mutations} of the input, to improve OOD generalization, such as the VQA-CP challenge. Under this paradigm, models utilize a consistency-constrained training objective to understand the effect of semantic changes in input (question-image pair) on the output (answer). Unlike existing methods on VQA-CP, \textit{MUTANT} does not rely on the knowledge about the nature of train and test answer distributions. \textit{MUTANT} establishes a new state-of-the-art accuracy on VQA-CP with a 10.57{\%} improvement. Our work opens up avenues for the use of semantic input mutations for OOD generalization in question answering. 
    more » « less
  5. When transferring a pretrained model to a downstream task, two popular methods are full fine-tuning (updating all the model parameters) and linear probing (updating only the last linear layer—the “head”). It is well known that fine-tuning leads to better accuracy in-distribution (ID). However, in this paper, we find that fine-tuning can achieve worse accuracy than linear probing out-of-distribution (OOD) when the pretrained features are good and the distribution shift is large. On 10 distribution shift datasets (Breeds-Living17, Breeds-Entity30, DomainNet, CIFAR → STL, CIFAR10.1, FMoW, ImageNetV2, ImageNet-R, ImageNet-A, ImageNet-Sketch), fine-tuning obtains on average 2% higher accuracy ID but 7% lower accuracy OOD than linear probing. We show theoretically that this tradeoff between ID and OOD accuracy arises even in a simple setting: fine-tuning overparameterized two-layer linear networks. We prove that the OOD error of fine-tuning is high when we initialize with a fixed or random head—this is because while fine-tuning learns the head, the lower layers of the neural network change simultaneously and distort the pretrained features. Our analysis suggests that the easy two-step strategy of linear probing then full fine-tuning (LP-FT), sometimes used as a fine-tuning heuristic, combines the benefits of both fine-tuning and linear probing. Empirically, LP-FT outperforms both fine-tuning and linear probing on the above datasets (1% better ID, 10% better OOD than full fine-tuning). 
    more » « less