The intensity and frequency of storms are projected to increase in many regions of the world because of climate change. Storms can alter environmental conditions in many ecosystems. In lakes and reservoirs, storms can reduce epilimnetic temperatures from wind‐induced mixing with colder hypolimnetic waters, direct precipitation to the lake's surface, and watershed runoff. We analyzed 18 long‐term and high‐frequency lake datasets from 11 countries to assess the magnitude of wind‐ vs. rainstorm‐induced changes in epilimnetic temperature. We found small day‐to‐day epilimnetic temperature decreases in response to strong wind and heavy rain during stratified conditions. Day‐to‐day epilimnetic temperature decreased, on average, by 0.28°C during the strongest windstorms (storm mean daily wind speed among lakes: 6.7 ± 2.7 m s−1, 1 SD) and by 0.15°C after the heaviest rainstorms (storm mean daily rainfall: 21.3 ± 9.0 mm). The largest decreases in epilimnetic temperature were observed ≥2 d after sustained strong wind or heavy rain (top 5thpercentile of wind and rain events for each lake) in shallow and medium‐depth lakes. The smallest decreases occurred in deep lakes. Epilimnetic temperature change from windstorms, but not rainstorms, was negatively correlated with maximum lake depth. However, even the largest storm‐induced mean epilimnetic temperature decreases were typically <2°C. Day‐to‐day temperature change, in the absence of storms, often exceeded storm‐induced temperature changes. Because storm‐induced temperature changes to lake surface waters were minimal, changes in other limnological variables (e.g., nutrient concentrations or light) from storms may have larger impacts on biological communities than temperature changes.
Floodplain lakes are widespread and ecologically important throughout tropical river systems, however data are rare that describe how temporal variations in hydrological, meteorological and optical conditions moderate stratification and mixing in these shallow lakes. Using time series measurements of meteorology and water‐column temperatures from 17 several day campaigns spanning two hydrological years in a representative Amazon floodplain lake, we calculated surface energy fluxes and thermal stratification, and applied and evaluated a 3‐dimensional hydrodynamic model. The model successfully simulated diel cycles in thermal structure characterized by buoyancy frequency, depth of the actively mixing layer, and other terms associated with the surface energy budget. Diurnal heating with strong stratification and nocturnal mixing were common; despite considerable heat loss at night, the strong stratification during the day meant that mixing only infrequently extended to the bottom at night. Simulations indicated that the diurnal thermocline up and downwelled creating lake‐wide differences in near‐surface temperatures and mixing depths. Infrequent full mixing creates conditions conducive to anoxia in these shallow lakes given their warm temperatures.
more » « less- Award ID(s):
- 1753856
- PAR ID:
- 10540415
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 60
- Issue:
- 2
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Abandoned river channels on alluvial floodplains represent areas where sediments, organic matter, and pollutants preferentially accumulate during overbank flooding. Theoretical models describing sedimentation in floodplain lakes recognize the different stages in their evolution, where the threshold for hydrological connectivity increases in older lakes as a plug‐bar develops. Sedimentary archives collected from floodplain lakes are widely used to reconstruct ecological and hydrological dynamics in riverine settings, but how floodplain lake evolution influences flow velocities and sedimentation patterns on an event scale remains poorly understood. Here we combine sediment samples collected in and around a floodplain lake with hydraulic modelling simulations to examine inundation, flow velocity, and sedimentation patterns in a floodplain lake along the Trinity River at Liberty, Texas. We focus our analyses on an extreme flood event associated with the landfall of Hurricane Harvey in August 2017 and develop a series of alternative lake bathymetries to examine the influence of floodplain lake evolution on flow velocity patterns during the flood. We find that sediments deposited in the lake after the Hurricane Harvey flood become thinner and finer with distance from the tie‐channel in accordance with simulated flow velocities that drop with distance from the tie‐channel. Flow velocity simulations from model runs with alternative plug‐bar geometries and lake depths imply that sedimentation patterns will shift as the lake evolves and infills. The integration of sediment sampling and hydraulic model simulations provides a method to understand the processes that govern sedimentation in floodplain lakes during flood events that will improve interpretations of individual events in sedimentary archives from these contexts.
-
Lakes are classified by thermal mixing regimes, with shallow waterbodies historically categorized as continuously mixing systems. Yet, recent studies demonstrate extended summertime stratification in ponds, underscoring the need to reassess thermal classifications for shallow waterbodies. In this study, we examined the summertime thermal dynamics of 34 ponds and shallow lakes across temperate North America and Europe to categorize and identify the drivers of different mixing regimes. We identified three mixing regimes: rarely (n = 18), intermittently (n = 10), and often (n = 6) mixed, where waterbodies mixed an average of 2%, 26%, and 75% of the study period, respectively. Waterbodies in the often mixed category were larger (≥4.17 ha) and stratification weakened with increased wind shear stress, characteristic of “shallow lakes.” In contrast, smaller waterbodies, or “ponds,” mixed less frequently, and stratification strengthened with increased shortwave radiation. Shallow ponds (<0.74 m) mixed intermittently, with daytime stratification often breaking down overnight due to convective cooling. Ponds ≥0.74 m deep were rarely or never mixed, likely due to limited wind energy relative to the larger density gradients associated with slightly deeper water columns. Precipitation events weakened stratification, even causing short‐term mixing (hours to days) in some sites. By examining a broad set of shallow waterbodies, we show that mixing regimes are highly sensitive to very small differences in size and depth, with potential implications for ecological and biogeochemical processes. Ultimately, we propose a new framework to characterize the variable mixing regimes of ponds and shallow lakes.more » « less
-
Abstract Lake surface temperatures are warming in many regions and have the potential to alter seasonal thermal stratification. However, the effects of climate change on thermal stratification can be difficult to characterize because trends in thermal stratification can be regulated by changes in multiple climate variables and other characteristics, such as water clarity. Here, we use long‐term (1993–2017) data from near‐pristine Crater Lake (Oregon) to understand long‐term changes in the depth and strength of summer stratification, measured by the center of buoyancy and Schmidt Stability, respectively. The depth of stratification has shoaled significantly (2.4 m decade−1), while stratification strength exhibited no long‐term trend. Empirical observations and modeling scenarios demonstrate that atmospheric stilling at Crater Lake is associated with the 25‐year shoaling trend as spring wind speeds declined over the observation period. While summer lake surface water and air temperatures warmed during the study period, spring air temperatures were variable and correlated with summer Schmidt Stability. Our results indicate that warmer spring air temperature resulted in earlier onset of stratification and stronger summer stratification. The observed shoaling of stratification depth at Crater Lake may have important ecological consequences, especially for non‐motile primary producers who can become constrained within a thinner epilimnion and exposed to higher solar radiation and reduced upwelling of nutrients. Driven by climate changes, many large lakes may be experiencing similar trends in seasonal stratification.
-
Abstract In this study, we report on turbulent mixing observed during the annual stratification cycle in the hypolimnetic waters of Lake Michigan (USA), highlighting stratified, convective, and transitional mixing periods. Measurements were collected using a combination of moored instruments and microstructure profiles. Observations during the stratified summer showed a shallow, wind‐driven surface mixed layer (SML) with locally elevated dissipation rates in the thermocline (
) potentially associated with internal wave shear. Below the thermocline, turbulence was weak ( ) and buoyancy‐suppressed ( < 8.5), with low hypolimnetic mixing rates ( ) limiting benthic particle delivery. During the convective winter period, a diurnal cycle of radiative convection was observed over each day of measurement, where temperature overturns were directly correlated with elevated turbulence levels throughout the water column ( ; ). A transitional mixing period was observed for spring conditions when surface temperatures were near the temperature of maximum density ( T MD3.98 ) and the water column began to stably stratify. While small temperature gradients allowed strong mixing over the transitional period ( ), hypolimnetic velocity shear was overwhelmed by weakly stable stratification ( ; ), limiting the development of the SML. These results highlight the importance of radiative convection for breaking down weak hypolimnetic stratification and driving energetic, full water column mixing during a substantial portion of the year (>100 days at our sample site). Ongoing surface water warming in the Laurentian Great Lakes is significantly reducing the annual impact of convective mixing, with important consequences for nutrient cycling, primary production, and benthic‐pelagic coupling.