Abstract Ice‐off dates on lakes are some of the longest phenological records in the field of ecology, and some of the best evidence of long‐term climatic change. However, there has been little investigation as to whether the date of ice‐off on a lake impacts spring and summer ecosystem dynamics. Here, I analyzed 274 years of long‐term data from eight north temperate lakes in two climate zones to address whether lakes have ecological memory of ice‐off in the subsequent summer. Five metrics were investigated: epilimnion temperatures, hypolimnion temperatures, hypolimnetic oxygen drawdown, water clarity, and spring primary productivity. The response of the metrics to ice‐off date were variable across latitude and lake type. The northern set of lakes stratified quickly following ice‐off, and early ice‐off years resulted in significantly warmer hypolimnetic temperatures. Oxygen depletion in the hypolimnion was not impacted by ice‐off date, likely because in late ice‐off years the lakes did not fully mix. In the southern lakes, ice‐off date was not correlated to the onset of stratification, with the latter being a more dominant control on hypolimnetic temperature and oxygen. The implications of these findings is that as ice‐off date trends earlier in many parts of the world, the lakes that will likely experience the largest changes in spring and summer ecosystem properties are the lakes that currently have the longest duration of lake ice. In considering a future with warmer winters, these results provide a starting point for predicting how lake ecosystem properties will change with earlier ice‐off. 
                        more » 
                        « less   
                    
                            
                            Earlier ice melt increases hypolimnetic oxygen despite regional warming in small Arctic lakes
                        
                    
    
            Abstract Although trends toward earlier ice‐out have been documented globally, the links between ice‐out timing and lake thermal and biogeochemical structure vary spatially. In high‐latitude lakes where ice‐out occurs close to peak intensity of solar radiation, these links remain unclear. Using a long‐term dataset from 13 lakes in West Greenland, we investigated how changing ice‐out and weather conditions affect lake thermal structure and oxygen concentrations. In early ice‐out years, lakes reach higher temperatures across the water column and have deeper epilimnia. Summer hypolimnia are the warmest (~ 11°C) in years when cooler air temperatures follow early ice‐out, allowing full lake turnover. Due to the higher potential for substantive spring mixing in early ice‐out years, a warmer hypolimnion is associated with higher dissolved oxygen concentrations. By affecting variability in spring mixing, the consequences of shifts in ice phenology for lakes at high latitudes differ from expectations based on temperate regions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2021713
- PAR ID:
- 10509932
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography Letters
- Volume:
- 9
- Issue:
- 3
- ISSN:
- 2378-2242
- Format(s):
- Medium: X Size: p. 258-267
- Size(s):
- p. 258-267
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Temperate lakes worldwide are losing ice cover but the implications for under‐ice thermal dynamics are poorly constrained. Using a 92‐year record of ice phenology from a temperate and historically dimictic lake, we examined trends, variability, and drivers of ice phenology and under‐ice temperatures. The onset of ice formation decreased by 23 days century−1, which can be largely attributed to warming air temperatures. Ice‐off date has become substantially more variable with spring air temperatures and cumulative February through April snowfall explaining over 80% of the variation in timing. As a result of changing ice phenology, total ice duration contracted by a month and more than doubled in interannual variability. Using weekly under‐ice temperature profiles for the most recent 36 years, we found that shorter ice duration decreased winter inverse stratification and was associated with an extended spring mixing period. We illustrate the limitations of relying on discrete ice clearance dates in our assumptions around under‐ice thermal dynamics by presenting high‐frequency under‐ice observations in two recent winters: one with intermittent ice cover and a year with slow spring ice clearance.more » « less
- 
            Abstract Floodplain lakes are widespread and ecologically important throughout tropical river systems, however data are rare that describe how temporal variations in hydrological, meteorological and optical conditions moderate stratification and mixing in these shallow lakes. Using time series measurements of meteorology and water‐column temperatures from 17 several day campaigns spanning two hydrological years in a representative Amazon floodplain lake, we calculated surface energy fluxes and thermal stratification, and applied and evaluated a 3‐dimensional hydrodynamic model. The model successfully simulated diel cycles in thermal structure characterized by buoyancy frequency, depth of the actively mixing layer, and other terms associated with the surface energy budget. Diurnal heating with strong stratification and nocturnal mixing were common; despite considerable heat loss at night, the strong stratification during the day meant that mixing only infrequently extended to the bottom at night. Simulations indicated that the diurnal thermocline up and downwelled creating lake‐wide differences in near‐surface temperatures and mixing depths. Infrequent full mixing creates conditions conducive to anoxia in these shallow lakes given their warm temperatures.more » « less
- 
            Abstract Reductions in ice cover duration and earlier ice breakup are two of the most prevalent responses to climate warming in lakes in recent decades. In dimictic lakes, the subsequent periods of spring mixing and summer stratification are both likely to change in response to these phenological changes in ice cover. Here, we used a modeling approach to simulate the effect of changes in latitude on long‐term trends in duration of ice cover, spring mixing, and summer stratification by “moving” a well‐studied lake across a range of latitudes in North America (35.2°N to 65.7°N). We found a changepoint relationship between the timing of ice breakup vs. spring mixing duration on 09 May. When ice breakup occurred before 09 May, which routinely occurred at latitudes < 47°N, spring mixing was longer and more variable; when ice breakup occurred after 09 May at latitudes > 47°N, spring mixing averaged 1 day with low variability. In contrast, the duration of summer stratification showed a relatively slower rate of increase when ice breakup occurred before 09 May (< 47°N) compared to a 109% faster rate of increase when ice breakup was after 09 May (> 47°N). Projected earlier ice breakup can result in important nonlinear changes in the relative duration of spring mixing and summer stratification, which can lead to mixing regime shifts that influence the severity of oxygen depletion differentially across latitudes.more » « less
- 
            Abstract Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970–2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade−1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m−3decade−1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade−1), but had high variability across lakes, with trends in individual lakes ranging from − 0.68 °C decade−1to + 0.65 °C decade−1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
