A general approach to stereospecific Pd-catalyzed cross-coupling reactions of benzylic stereocenters
Stereospecific Pd-catalyzed cross-coupling reactions using enantioenriched benzylic tricyclohexyltin nucleophiles enable broad access to enantioenriched benzylic stereocenters.
more »
« less
- PAR ID:
- 10540569
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 14
- Issue:
- 48
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 14124 to 14130
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Enantioenriched azaarylmethyl amine derivatives are useful building blocks in synthetic and medicinal chemistry. To access these valuable motifs, an enantioselective palladium-catalyzed benzylation of azaarylmethyl amine pronucleophiles is introduced. Of note, this is a rare application of asymmetric (2-naphthyl)methylation of pro-nucleophiles with high p K a values (p K a ≈ 34 in DMSO). Control experiments support the notion that the coordination of Li + to the azaaryl nitrogen plays a critical role in the substitution process. With this procedure, enantioenriched (2-naphthyl)methylene azaarylmethyl amines with a variety of azaaryl groups (pyridyl, pyrazine, quinoxaline and isoquinoline) and cyclic and acyclic amines are readily obtained with good yields and enantioselectivities up to 99%.more » « less
-
The Pd-catalyzed asymmetric α-arylation of carbonyl compounds is a valuable strategy to form benzylic stereocenters. However, the origin of the stereoselectivity of these reactions is poorly understood, and little is known about the reactivity of the putative diastereomeric arylpalladium enolate intermediates. To this end, we report the synthesis and characterization of a series of diphosphine-ligated arylpalladium fluoroenolate complexes, including complexes bearing a metal-bound, stereogenic carbon and an enantioenriched chiral diphosphine ligand. These complexes reductively eliminate to form chiral α-aryl-α-fluorooxindoles with enantioselectivities and rates that are relevant to those of the catalytic process with SEGPHOS as the ancillary ligand. Kinetic studies showed that the rate of reductive elimination is slightly slower than the rate of epimerization of the intermediate, causing the reductive elimination step to impart the greatest influence on the enantioselectivity. DFT calculations of these processes are consistent with these experimental rates and suggest that the minor diastereomer forms the major enantiomer of the product. The rates of reductive elimination from complexes containing a variety of electronically varied aryl ligands revealed the unusual trend that complexes bearing more electron-rich aryl ligands react faster than those bearing more electron-poor aryl ligands. Noncovalent Interaction (NCI) and Natural Bond Orbital (NBO) analyses of the transition-state structures for reductive elimination from the SEGPHOS-ligated complexes revealed key donor-acceptor interactions between the Pd center and the fluoroenolate fragment. These interactions stabilize the pathway to the major product enantiomer more strongly than they stabilize that to the minor enantiomer.more » « less
-
Benzylic alcohols are among the most important intermediates in organic synthesis. Recently, the use of abundant metals has attracted significant attention due to the issues with the scarcity of platinum group metals. Herein, we report a sequential method for the synthesis of benzylic alcohols by a merger of iron catalyzed cross-coupling and highly chemoselective reduction of benzamides promoted by sodium dispersion in the presence of alcoholic donors. The method has been further extended to the synthesis of deuterated benzylic alcohols. The iron-catalyzed Kumada cross-coupling exploits the high stability of benzamide bonds, enabling challenging C(sp2)–C(sp3) cross-coupling with alkyl Grignard reagents that are prone to dimerization and β-hydride elimination. The subsequent sodium dispersion promoted reduction of carboxamides proceeds with full chemoselectivity for the C–N bond cleavage of the carbinolamine intermediate. The method provides access to valuable benzylic alcohols, including deuterium-labelled benzylic alcohols, which are widely used as synthetic intermediates and pharmacokinetic probes in organic synthesis and medicinal chemistry. The combination of two benign metals by complementary reaction mechanisms enables to exploit underexplored avenues for organic synthesis.more » « less
An official website of the United States government

