skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mass Is Better than Light: Students’ Perception of Using Spectrophotometry and Gravimetric Analysis to Determine the Formula of a Hydrate in the General Chemistry Lab
A key part of the practice of chemistry is the analysis of chemical composition, including through gravimetric analysis and spectrophotometry. However, the complexity of doing multiple calculations to obtain analytical evidence, such as that required to determine an empirical formula, presents a challenge if such analytical methods are to be understood by students and if they are to support meaningful learning about other chemical concepts and methods. In this study we investigate student use of spectrophotometry and gravimetric analysis to determine the number of water molecules in hydrates of copper (II) salts, a method previously described by Barlag and Nyasulu. Using phenomenography to analyze students reports through the lens of meaningful learning we identified four distinct perceptions and, within them, information of how students make sense of the complex analytical steps involved in the experiment. We identify how meaningful learning is present where students recognized that spectrophotometry was based on light-matter interactions (cognitive,) was faster and more accurate (psychomotor), and allowed students to express confidence in the process and their results (affective). However, it is also the case that meaningful learning was compromised where students had trouble conceptualizing spectrophotometry, saw it as a set of disconnected steps, and where they saw absorbance as a computer-generated value and not a property of the solution. This led to the perception that gravimetric analysis provided a more direct and understandable technique. We discuss the implications of these findings for chemistry education research (CER) and for curriculum development in the undergraduate teaching lab.  more » « less
Award ID(s):
2111446
PAR ID:
10540577
Author(s) / Creator(s):
;
Editor(s):
Holme, Thomas A
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of Chemical Education
Volume:
101
Issue:
5
ISSN:
0021-9584
Page Range / eLocation ID:
1822 to 1835
Subject(s) / Keyword(s):
Chemical Education Research First Year Undergraduate/General, Laboratory instruction, Meaningful Learning, Phenomenography, Analytical chemistry, Gravimetric Analysis, Spectrophotometry, hydrates.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Incorporating real-life context through connections to research early in the curriculum can create meaningful learning opportunities that encourage students to engage deeply with classroom content to construct chemistry knowledge. Course-based undergraduate research experiences have been successful at integrating real-life context, but are often only incorporated into upper-level courses. To provide an additional pathway to foster interaction with research, four activities from an introductory chemistry discussion class were created to incorporate authentic research connections. Care was taken to incorporate metacognitive questions designed to help students make connections between their preexisting knowledge and course content. Marzano’s taxonomy was used to analyze the cognitive complexity of tasks, which increased in the revised activities, allowing for more opportunities for knowledge construction. Audio and written work of student groups as they worked through activities was collected. Qualitative analysis of student engagement revealed that control over the content of activities to incorporate opportunities for knowledge construction is not enough to facilitate students consciously engaging in meaningful learning. If instructors wish to promote students integrating chemistry knowledge into their existing framework, course instructors, including graduate teaching assistants, need to be trained on how to properly facilitate classroom experiences to increase the likelihood of success. 
    more » « less
  2. Within chemistry education, there are various curricular and pedagogical approaches that aim to improve teaching and learning in chemistry. Efforts to characterize these transformations have primarily focused on student reasoning and performance, and little work has been done to explore student perceptions of curricular and pedagogical transformations and whether these perceptions align with the transformational intent. To complement our previous work on the Organic Chemistry, Life, the Universe, and Everything (OCLUE) curriculum, we developed this exploratory study to determine if students had perceived the goals of the transformation. As in our previous research on OCLUE, we compared perceptions between OCLUE and a more traditional organic chemistry course. Using inductive and deductive qualitative methodologies, we analyzed student responses to three open-eneded questions focused on how students perceived they were expected to think, what they found most difficult, and how they perceived they were assessed. The findings were classified into three superodinate themes: one where students perceived they were expected to learn things as rote knowledge, such as memorization (“Rote Knowledge”), another where students perceived they were expected to use their knowledge (“Use of Knowledge”), and responses that used vague, generalized language, were uninformative, or did not address the questions asked (“Other”). Students in these two courses responded very differently to the open-ended questions with students in OCLUE being more likely to perceive they were expected to use their knowledge, while students in the traditional course reported rote learning or memorization more frequently. As the findings evolved, our interpretations and discussions were influenced by sociocultural perspectives and other cultural frameworks. We believe this approach can provide meaningful insights into transformational intent and certain features of classroom cultures. 
    more » « less
  3. Talanquer, Vicente; Holme, Thomas A (Ed.)
    Fluorescence experiments hold great potential to develop and deepen student understanding of fundamental chemical concepts because the phenomenon is engaging and also illustrates many different chemical concepts and applications, including in quantum mechanics, spectroscopy, kinetics, equilibrium, and stoichiometry, through easily observable effects. Thus, many fluorescence experiments have been published for higher education. However, less attention has been given to analyzing students’ actual learning and experiences in systematic ways. In this paper, we share findings from interviews with students who completed three different fluorescence laboratory experiments in general chemistry courses at an urban public commuter university, analyzed through the lens of meaningful learning. Interview data for the affective learning dimension of meaningful learning was done with Galloway et al.’s 18-word affective matrix with addition of a new category that emerged strongly in the interviews: “enjoyed”. Interview transcripts were also analyzed for elements corresponding to the psychomotor and cognitive domains of meaningful learning. Results documented how important the affective and psychomotor domains were to students’ experiences in this setting. In addition to the three domains of meaningful learning, we also documented the particular role of the process of “visualization” to the students and examined how students connected their observations to molecular-level processes and corresponding models using Johnstone’s triangle as a framework. Our findings indicate that students primarily engaged with and appreciated the psychomotor domain and the visualization at the macroscopic level of the fluorescence experiments, which contributed to their understanding of the submicroscopic level but not at the symbolic level. By engaging students in the affective domain, the visually compelling experiments support deeper connections between macroscopic observations and submicroscopic models. We hope that this research informs future directions in designing curriculum and supports the effective integration of fluorescence experiments into general chemistry instruction. 
    more » « less
  4. Community-based learning (CBL), also known as service learning (SL), provides students with an active and meaningful learning environment and has been studied in STEM courses for several decades. Chemistry for the Community is a novel chemistry curriculum that weaves service-learning projects throughout multiple courses, including gateway courses, and allows students to build self-efficacy and transferable skills. Over a three-year period, students experienced multiple projects while enrolled in two-semester general and organic chemistry courses, and one-semester organic survey, environmental, and analytical chemistry courses. Student experiences, gathered by surveys, reflections, and interviews were compared to those of students conducting equivalent non-SL projects, as well as projects conducted virtually due to the COVID-19 pandemic. Public communication and community partner interaction emerged as major themes from the data and were explored through the lens of self-determination theory. Results indicate that students were anxious about their role, but were motivated by community partner interaction. Project completion corresponded to an increase in self-efficacy regarding similar future tasks, with students perceiving benefits of multiple experiences. 
    more » « less
  5. ABSTRACT In the case of General Chemistry, many engineering students only take a one semester class with important topics such as kinetics and equilibrium being given limited coverage. Considerable time is spent covering materials already covered in other courses such as General Physics and Introduction to Engineering. Moreover, most GChem courses are oriented toward health science majors and lack a materials focus relevant to engineering. Taking an atoms first approach, we developed and now run a one-semester course in general chemistry for engineers emphasizing relevant materials topics. Laboratory exercises integrate practical examples of materials science enriching the course for engineering students. First-semester calculus and a calculus-based introduction to engineering course are prerequisites, which enables teaching almost all the topics from a traditional two semester GChem course in this new course with advance topics as well. To support this course, an open access textbook in LibreText, formerly ChemWiki was developed entitled General Chemistry for Engineering . Many of the topics were supported using Chemical Excelets and Materials Science Excelets, which are interactive Excel/Calc spreadsheets. The laboratory includes data analysis and interpretation, calibration, error analysis, reactions, kinetics, electrochemistry, and spectrophotometry. To acquaint the students with online collaboration typical of today’s technical workplace Google Drive was used for data analysis and report preparation in the laboratory. 
    more » « less