skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Cross-watershed leakage of agricultural nutrient runoff
Abstract Agricultural nutrient runoff has been a major contributor to hypoxia in many downstream coastal ecosystems. Although programs have been designed to reduce nutrient loading in individual coastal waters, cross watershed interdependencies of nutrient runoff have not been quantified due to a lack of suitable modeling tools. Cross-watershed pollution leakage can occur when nutrient runoff moves from more to less regulated regions. We illustrate the use of an integrated assessment model IAM that combines economic and process-based biophysical tools to quantify Nitrogen loading leakage across three major US watersheds. We also assess losses in consumer and producer surplus from decreased commodity supply and higher prices when nutrient delivery to select coastal ecosystems is restricted. Reducing agricultural N loading in the Gulf of Mexico by 45% (a) increases loading in the Chesapeake Bay and Western Lake Erie by 4.2% and 5.5%, respectively, and (b) results in annual surplus losses of $7.1 and $6.95 billion with and without restrictions on leakage to the Chesapeake Bay and Lake Erie, respectively.  more » « less
Award ID(s):
1903543
PAR ID:
10540651
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
19
Issue:
7
ISSN:
1748-9326
Page Range / eLocation ID:
074047
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Efficient management of nitrogen (N) and phosphorus (P) is imperative for sustainable agriculture, resource conservation, and reducing environmental pollution. Despite progress in on-farm practices and urban wastewater treatment in the Chesapeake Bay (CB) watershed, limited attention has been given to nutrient transport, use, and handling between farms and urban environments. This study uses the hierarchical CAFE (Cropping system, Animal-crop system, Food system, and Ecosystem) framework to evaluate nutrient management performances within the watershed. We first develop a three-decade, county-level nutrient budget database (1985–2019), then analyze the spatiotemporal patterns of N and P budgets, as well as N and P use efficiencies, within the four CAFE hierarchies. Our results indicate a sizable increase in potential N and P losses beyond crop fields (i.e. in the Animal-crop system, Food system, and Ecosystem), surpassing losses from cropland in over 90% of counties. To address these system-wide trade-offs, we estimate the nutrient resources in waste streams beyond croplands, which, if recovered and recycled, could theoretically offset mineral fertilizer inputs in over 60% of counties. Additionally, the growing imbalance in excess N versus P across systems, which increases the N:P ratio of potential losses, could pose an emerging risk to downstream aquatic ecosystems. By utilizing a systematic approach, our novel application of the CAFE framework reveals trade-offs and synergies in nutrient management outcomes that transcend agro-environmental and political boundaries, underscores disparities in N and P management, and helps to identify unique opportunities for enhancing holistic nutrient management across systems within the CB watershed. 
    more » « less
  2. The relationship between nutrient cycling and water quality in mixed-use ecosystems is driven by interactions among biotic and abiotic processes. However, the underlying processes cannot always be directly observed or modeled at broad spatial scales. Numerous empirical studies have employed land use patterns, variations in watershed physiography or disturbance regimes to characterize nutrient export from mixed-use watersheds, but simultaneously disentangling the effects of such factors remains challenging and few models directly incorporate vegetation biochemistry. Here we use structural equation models (SEMs) to assess the relative influence of foliar chemical traits (derived from imaging spectroscopy), watershed physiography, and human land use on the water quality (summer baseflow nitrate-N and soluble reactive phosphorus concentration) in watersheds across the Upper Midwestern United States. We use an SEM to link water quality (stream nitrate-nitrogen and dissolved phosphorus) to foliar retention (AVIRIS-Classic derived foliar traits related to recalcitrance), watershed retention (wetland proportion, MODIS Tasseled Cap Wetness), runoff (agricultural and urban land use), and watershed leakiness (AVIRIS-Classic foliar nitrogen, nitrogen deposition). The SEMs confirmed that variables associated with foliar retention derived from imaging spectroscopy are negatively related to watershed leakiness (standardized path coefficient = −0.892) and positively to watershed retention (standardized path coefficient = 0.705), with features related to watershed retention and runoff exerting the strongest controls on water quality (standardized path coefficients of −0.270 and 0.331 respectively). Comparing forested and agricultural watersheds, we found significantly increased importance of foliar retention to watershed leakiness in forests compared to agriculture (standardized coefficients of −1.004 and −0.764 respectively), with measures of watershed retention more important to runoff and water quality in agricultural watersheds. The results illustrate the capacity of imaging spectroscopy to provide measures of foliar traits that influence nutrient cycling in watersheds. Ultimately, the results may help focus development and restoration policies towards building more resilient landscapes that take into consideration associations among functional traits of vegetation, physiography and climate. 
    more » « less
  3. We develop the first spatially integrated economic-hydrological model of the western Lake Erie basin explicitly linking economic models of farmers' field-level Best Management Practice (BMP) adoption choices with the Soil and Water Assessment Tool (SWAT) model to evaluate nutrient management policy cost-effectiveness. We quantify tradeoffs among phosphorus reduction policies and find that a hybrid policy coupling a fertilizer tax with cost-share payments for subsurface placement is the most cost-effective, and when implemented with a 200% tax can achieve the stated policy goal of 40% reduction in nutrient loadings. We also find economic adoption models alone can overstate the potential for BMPs to reduce nutrient loadings by ignoring biophysical complexities. Key Words: Integrated assessment model; agricultural land watershed model; water quality; cost-share; conservation practice; nutrient management JEL Codes: H23, Q51, Q52, Q53 
    more » « less
  4. Abstract Terrestrial hydrological and nutrient cycles are subjected to major disturbances by agricultural operations and urbanization that profoundly influence freshwater resources. Non‐point source pollution is one of the primary causes for water quality deterioration, and thus an emerging imperative in limnology is establishing empirical models that connect watershed attributes and hydrological drivers with lake nutrient dynamics. Here, we compiled three nation‐wide nutrient, meteorological, and watershed‐landscape data sets, to develop Generalized Linear Models that predict lake phosphorus and nitrogen concentrations as a function of the surrounding watershed characteristics within various hydrological distances across 104 Chinese lakes and reservoirs. Our national‐scale investigation revealed that lake nutrient concentrations can be satisfactorily predicted by proxies of natural drivers and anthropogenic activities, reflecting the properties of the surrounding watershed. Counter to previous studies, we found that China's lake nutrient concentrations strongly depend on watershed characteristics within a hydrological distance of less than 45 km rather than the entire watershed. Furthermore, extensive human activities in watersheds not only compromise our predictive capacity, but also increase the hydrological distance that is relevant to predict lake nutrients. This national‐scale characterization can inform one of the most contentious issues in the context of China's lake management, that is, the determination of the extent of the nearshore area, where nutrient control should be prioritized. As far as we know, our study represents the first attempt to apply the concept of hydrological distance and establish statistical models that can delineate the critical spatial domain primarily responsible for the nutrient conditions along the watershed‐lake continuum. 
    more » « less
  5. Nutrient runoff from agricultural regions of the midwestern U.S. corn belt has degraded water quality in many inland and coastal water bodies such as the Great Lakes and Gulf of Mexico. Under current climate, observational studies have shown that winter cover crops can reduce dissolved nitrogen and phosphorus losses from row-cropped agricultural watersheds, but performance of cover crops in response to climate variability and climate change has not been systematically evaluated. Using the Soil & Water Assessment Tool (SWAT) model, calibrated using multiple years of field-based data, we simulated historical and projected future nutrient loss from two representative agricultural watersheds in northern Indiana, USA. For 100% cover crop coverage, historical simulations showed a 31–33% reduction in nitrate (NO3−) loss and a 15–23% reduction in Soluble Reactive Phosphorus (SRP) loss in comparison with a no-cover-crop baseline. Under climate change scenarios, without cover crops, projected warmer and wetter conditions strongly increased nutrient loss, especially in the fallow period from Oct to Apr when changes in infiltration and runoff are largest. In the absence of cover crops, annual nutrient losses for the RCP8.5 2080s scenario were 26–38% higher for NO3−, and 9–46% higher for SRP. However, the effectiveness of cover crops also increased under climate change. For an ensemble of 60 climate change scenarios based on CMIP5 RCP4.5 and RCP8.5 scenarios, 19 out of 24 ensemble-mean simulations of future nutrient loss with 100% cover crops were less than or equal to historical simulations with 100% cover crops, despite systematic increases in nutrient loss due to climate alone. These results demonstrate that planting winter cover crops over row-cropped land areas constitutes a robust climate change adaptation strategy for reducing nutrient losses from agricultural lands, enhancing resilience to a projected warmer and wetter winter climate in the midwestern U.S. 
    more » « less