Fibrous networks such as collagen are common in physiological systems. One important function of these networks is to provide mechanical stability for cells and tissues. At physiological levels of connectivity, such networks would be mechanically unstable with only central-force interactions. While networks can be stabilized by bending interactions, it has also been shown that they exhibit a critical transition from floppy to rigid as a function of applied strain. Beyond a certain strain threshold, it is predicted that underconstrained networks with only central-force interactions exhibit a discontinuity in the shear modulus. We study the finite-size scaling behavior of this transition and identify both the mechanical discontinuity and critical exponents in the thermodynamic limit. We find both non-mean-field behavior and evidence for a hyperscaling relation for the critical exponents, for which the network stiffness is analogous to the heat capacity for thermal phase transitions. Further evidence for this is also found in the self-averaging properties of fiber networks.
more »
« less
Walking with the Atoms in a Chemical Bond: A Perspective Using Quantum Phase Transition
Phase transitions happen at critical values of the controlling parameters, such as the critical temperature in classical phase transitions, and system critical parameters in the quantum case. However, true criticality happens only at the thermodynamic limit, when the number of particles goes to infinity with constant density. To perform the calculations for the critical parameters, a finite-size scaling approach was developed to extrapolate information from a finite system to the thermodynamic limit. With the advancement in the experimental and theoretical work in the field of ultra-cold systems, particularly trapping and controlling single atomic and molecular systems, one can ask: do finite systems exhibit quantum phase transition? To address this question, finite-size scaling for finite systems was developed to calculate the quantum critical parameters. The recent observation of a quantum phase transition in a single trapped 171 Yb+ ion indicates the possibility of quantum phase transitions in finite systems. This perspective focuses on examining chemical processes at ultra-cold temperatures, as quantum phase transitions—particularly the formation and dissociation of chemical bonds—are the basic processes for understanding the whole of chemistry.
more »
« less
- Award ID(s):
- 1955907
- PAR ID:
- 10540689
- Publisher / Repository:
- Kais, Sabre
- Date Published:
- Journal Name:
- Entropy
- Volume:
- 26
- Issue:
- 3
- ISSN:
- 1099-4300
- Page Range / eLocation ID:
- 230
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We consider simple mean field continuum models for first order liquid–liquid demixing and solid–liquid phase transitions and show how the Maxwell construction at phase coexistence emerges on going from finite-size closed systems to the thermodynamic limit. The theories considered are the Cahn–Hilliard model of phase separation, which is also a model for the liquid-gas transition, and the phase field crystal model of the solid–liquid transition. Our results show that states comprising the Maxwell line depend strongly on the mean density with spatially localized structures playing a key role in the approach to the thermodynamic limit.more » « less
-
Monitored quantum circuits exhibit entanglement transitions at certain measurement rates. Such a transition separates phases characterized by how much information an observer can learn from the measurement outcomes. We study SU(2)-symmetric monitored quantum circuits, using exact numerics and a mapping onto an effective statistical-mechanics model. Due to the symmetry's non-Abelian nature, measuring qubit pairs allows for nontrivial entanglement scaling even in the measurement-only limit. We find a transition between a volume-law entangled phase and a critical phase whose diffusive purification dynamics emerge from the non-Abelian symmetry. Additionally, we identify a “spin-sharpening transition.” Across the transition, the rate at which measurements reveal information about the total spin quantum number changes parametrically with system size.more » « less
-
By setting the inverse temperature loose to occupy the complex plane, Fisher showed that the zeros of the complex partition function , if approaching the real axis, reveal a thermodynamic phase transition. More recently, Fisher zeros were used to mark the dynamical phase transition in quench dynamics. It remains unclear, however, how Fisher zeros can be employed to better understand quantum phase transitions or the nonunitary dynamics of open quantum systems. Here we answer this question by a comprehensive analysis of the analytically continued one-dimensional transverse field Ising model. We exhaust all the Fisher zeros to show that in the thermodynamic limit they congregate into a remarkably simple pattern in the form of continuous open or closed lines. These Fisher lines evolve smoothly as the coupling constant is tuned, and a qualitative change identifies the quantum critical point. By exploiting the connection between and the thermofield double states, we obtain analytical expressions for the short- and long-time dynamics of the survival amplitude, including its scaling behavior at the quantum critical point. We point out can be realized and probed in monitored quantum circuits. The exact analytical results are corroborated by the numerical tensor renormalization group. We further show that similar patterns of Fisher zeros also emerge in other spin models. Therefore, the approach outlined may serve as a powerful tool for interacting quantum systems.more » « less
-
While quantum phase transitions share many characteristics with thermodynamic phase transitions, they are also markedly different as they occur at zero temperature. Hence, it is not immediately clear whether tools and frameworks that capture the properties of thermodynamic phase transitions also apply in the quantum case. Concerning the crossing of thermodynamic critical points and describing its non-equilibrium dynamics, the Kibble–Zurek mechanism and linear response theory have been demonstrated to be among the very successful approaches. In the present work, we show that these two approaches are also consistent in the description of quantum phase transitions, and that linear response theory can even inform arguments of the Kibble–Zurek mechanism. In particular, we show that the relaxation time provided by linear response theory gives a rigorous argument for why to identify the “gap” as a relaxation rate, and we verify that the excess work computed from linear response theory exhibits Kibble–Zurek scaling.more » « less
An official website of the United States government

