skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessing students’ views about experimental physics in a German laboratory course
Abstract Physics laboratory courses (PLC) have been recently the topic of several research studies examining their effectiveness at reaching their goals. As a result, a discussion about the effectiveness of traditional PLC for students’ content knowledge, skills, and “expert-thinking” acquisition has developed. Critical for the investigation of students learning in those settings has been the development of research-based assessments tools. An example of those is the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Recently, we translated the E-CLASS into German and set up a centralized survey administration system for instructors, allowing data acquisition and automated data analysis. Previously, we described this process and presented the preliminary results of the study of the introductory PLC at the University of Potsdam (UP). Here, we present an extended study that allows us to make stronger conclusions about students’ views about experimental physics at the UP. Overall, we find that students at US institutions have a higher level of “expert-like” views than students at the UP.  more » « less
Award ID(s):
1734006
PAR ID:
10540807
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Science
Date Published:
Journal Name:
Journal of Physics: Conference Series
Volume:
2750
Issue:
1
ISSN:
1742-6588
Page Range / eLocation ID:
012013
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Introductory physics lab courses aim to have students gain a wide variety of skills and knowledge, including developing views of the nature of experimental physics that are aligned with common expert views. The large introductory lab course ( 700 students) at the University of Colorado Boulder has been recently transformed to explicitly address this goal among others. To measure the level of success in reaching this goal, we used an established assessment instrument, the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS), which probes students’ views and expectations of experimental physics. We collected students’ responses to E-CLASS during three semesters before, and four semesters after, the course transformation. We observe statistically significant differences between the before and after transformation post-test scores of the (i) overall E-CLASS survey and (ii) some individual E-CLASS items, especially those closely related to specific course learning outcomes. 
    more » « less
  2. null (Ed.)
    We report results from a study designed to identify links between undergraduate students' views about experimental physics and their engagement in multiweek projects in lab courses. Using surveys and interviews, we explored whether students perceived particular classroom activities to be features of experimental physics practice. We focused on 18 activities, including maintaining lab notebooks, fabricating parts, and asking others for help. Interviewees identified activities related to project execution as intrinsic to experimental physics practice based on high prevalence of those activities in interviewees' own projects. Fabrication-oriented activities were identified as conditional features of experimentation based on differences between projects, which interviewees attributed to variations in project resources. Interpersonal activities were also viewed as conditional features of experimentation, dependent upon one's status as novice or expert. Our findings suggest that students' views about experimental physics are shaped by firsthand experiences of their own projects and secondhand experiences of those of others. 
    more » « less
  3. Jones, Dyan; Ryan, Qing X.; Pawl, Andrew (Ed.)
    Designing physics courses that support students' activation and development of expert-like physics epistemologies is a significant goal of Physics Education Research. However, very little research has focused on how physics students' interactions with course structures resonate with different epistemological views. As part of a course redesign effort to increase student success in introductory physics, we interviewed introductory physics students about their experiences with course structures and their learning and belonging beliefs. We present here a case from this broader data corpus in which a student, Robyn, discusses his epistemological views of physics problem solving and his experiences with physics lectures, office hours, and discussion sections. We find that Robyn's physics epistemology manifests consistently across his interactions with each of these different course structures, suggesting a possible resonance between students' beliefs and their experiences with course structures and the value of further investigation into the potential merits of comprehensive course design. 
    more » « less
  4. Why do secondary students in the US consistently and increasingly report a lack of interest in mathematics? Lack of interest in mathematics has been well documented in TIMSS responses; students dissatisfaction with mathematics more than doubled by 2011, when 40% of 8th graders reported not liking math, up from 18% as 4th graders in 2007. And, sadly, the trend appears to be worsening; in 2015, 47% of 8th graders indicated not liking math, up from 22% as 4th graders. In order to positively impact student attitudes towards mathematics, it is important to understand factors that may influence secondary students’ relationship with the discipline. This poster presents findings from an exploratory study of student disposition toward mathematics. We designed an online survey to learn about students’ relationship with mathematics, including experiences and settings that contribute to both positive and negative feelings about the subject. We surveyed 275 students, grades 9 to 12, in 11 classes in three schools in three New England districts. Though not randomly chosen, this sample allows us to examine student attitudes across a variety of contexts. We asked students about their feelings towards mathematics over the years, as well as which aspects of class they most enjoyed or disliked. Finally, we included items from the TRIPOD survey (Wallace et al., 2016) and the 2015 NAEP survey, which allows us to compare our sample with the national sample. Initial results indicate that student view their teachers and the topics of study as the central factors influencing their enjoyment of mathematics class. We found a correlation between responses that math is boring and that it is not relevant. Students who like math and those who do not reported different class activity preferences. For example, students who like math reported disliking watching a video in class, while students who dislike math reported disliking learning something new. Both groups of students (those who like math and those who do not) dislike math class when they have to present work to classmates, but hold positive views of solving puzzles and working with other students. Technology seems to appeal equally to both groups. Students who reported disliking math also look forward to playing competitive games. We saw no evidence that gender or race corresponded to students’ level of appreciation math. Finally, students reported liking math class less in high school than in middle school. Identifying factors that influence secondary student mathematical dispositions can inform curriculum designers seeking to improve mathematical attitudes. Future studies can learn if new curricular designs can change student relationships with mathematics to reverse recent trends. 
    more » « less
  5. null (Ed.)
    Research-based assessments (RBAs; e.g., the Force Concept Inventory) that measure student content knowledge, attitudes, or identities have played a major role in transforming physics teaching practices. RBAs offer instructors a standardized method for empirically investigating the efficacy of their instructional practices and documenting the impacts of course transformations. Unlike course exams, the common usage of standardized RBAs across institutions uniquely supports instructors to compare their student outcomes over time or against multi-institutional data sets. While the number of RBAs and RBA-using instructors has increased over the last three decades, barriers to administering RBAs keep many physics instructors from using them.1,2 To mitigate these barriers, we have created full-service online RBA platforms (i.e., the Learning About STEM Student Outcomes [LASSO],3 Colorado Learning Attitudes About Science Survey for Experimental Physics [E-CLASS],4 and Physics Lab Inventory of Critical thinking [PLIC]5 platforms) that host, administer, score, and analyze RBAs. These web-based platforms can make it easier for instructors to use RBAs, especially as many courses have been forced to transition to online instruction. We hope that this editorial can serve as a guide for instructors considering administering RBAs online. In what follows, we examine common barriers to using RBAs, how online administration can remove those barriers, and the research into online administration of RBAs. In the supplementary material,6 we also include a practical how-to for administering RBAs online and sample student email wording. 
    more » « less