skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact on students' views of experimental physics from a large introductory physics lab course
Introductory physics lab courses aim to have students gain a wide variety of skills and knowledge, including developing views of the nature of experimental physics that are aligned with common expert views. The large introductory lab course ( 700 students) at the University of Colorado Boulder has been recently transformed to explicitly address this goal among others. To measure the level of success in reaching this goal, we used an established assessment instrument, the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS), which probes students’ views and expectations of experimental physics. We collected students’ responses to E-CLASS during three semesters before, and four semesters after, the course transformation. We observe statistically significant differences between the before and after transformation post-test scores of the (i) overall E-CLASS survey and (ii) some individual E-CLASS items, especially those closely related to specific course learning outcomes.  more » « less
Award ID(s):
1734006
PAR ID:
10233230
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 Physics Education Research Conference Proceedings
Page Range / eLocation ID:
533 to 538
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Physics laboratory courses (PLC) have been recently the topic of several research studies examining their effectiveness at reaching their goals. As a result, a discussion about the effectiveness of traditional PLC for students’ content knowledge, skills, and “expert-thinking” acquisition has developed. Critical for the investigation of students learning in those settings has been the development of research-based assessments tools. An example of those is the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Recently, we translated the E-CLASS into German and set up a centralized survey administration system for instructors, allowing data acquisition and automated data analysis. Previously, we described this process and presented the preliminary results of the study of the introductory PLC at the University of Potsdam (UP). Here, we present an extended study that allows us to make stronger conclusions about students’ views about experimental physics at the UP. Overall, we find that students at US institutions have a higher level of “expert-like” views than students at the UP. 
    more » « less
  2. The large introductory physics lab course at the University of Colorado Boulder, which serves primarily engineering and physical science majors, was recently completely redesigned to align with new explicit learning goals. One of the learning goals of the new course was to have students enjoy working on physics experiments and to see value in experimental physics as a discipline. Additionally, we wanted to make the student workload consistent with a one credit course. To help achieve these goals, we created custom interactive videos that were viewed by the students before the lab to help them prepare for the lab activities. We present design principles for creating these videos, as well as data regarding student engagement and perceptions of this part of the course. Physics Education Research Conference 2019 Part of the PER Conference series Provo, UT: July 24-25, 2019 
    more » « less
  3. Jones, Dyan; Ryan, Qing X.; Pawl, Andrew (Ed.)
    Designing physics courses that support students' activation and development of expert-like physics epistemologies is a significant goal of Physics Education Research. However, very little research has focused on how physics students' interactions with course structures resonate with different epistemological views. As part of a course redesign effort to increase student success in introductory physics, we interviewed introductory physics students about their experiences with course structures and their learning and belonging beliefs. We present here a case from this broader data corpus in which a student, Robyn, discusses his epistemological views of physics problem solving and his experiences with physics lectures, office hours, and discussion sections. We find that Robyn's physics epistemology manifests consistently across his interactions with each of these different course structures, suggesting a possible resonance between students' beliefs and their experiences with course structures and the value of further investigation into the potential merits of comprehensive course design. 
    more » « less
  4. null (Ed.)
    Writing is an important aspect of experimental physics. Physics laboratory classes typically engage students in scientific documentation and writing in the forms of lab notebooks, reports, or proposals. Instructors of these classes may have a variety of motivations for incorporating writing. We previously developed a framework for thinking about the role of writing in physics lab classes that lists and categorizes possible goals instructors may have for writing. Here, we use that framework as a research tool to investigate students' views about, and experiences with, writing in lab classes, and experimental physics more generally. We present results of an analysis of student responses to weekly reflection questions throughout one semester of an advanced lab class. The results suggest that students think about writing in a variety of ways, and that the context and framing of the course may impact student thinking about the purpose of writing. 
    more » « less
  5. This complete evidence-based practice paper discusses the strategies and results of an introduction to mechanics course, designed to prepare students for introductory-level physics and other fundamental courses in engineering, such as statics, strength of materials, and dynamics. The course was developed to address historically high failure (DFW) rates in the physics courses and is part of a set of interventions implemented to support student success in a college of engineering and computer science. The course focuses on providing in-depth understanding of Newton’s Laws of motion, free-body diagrams, and linear and projectile motion. Because it focuses on a limited number of competencies, it is possible to spend more time on inquiry-based activities and in-class discussions. The course framework was designed considering the Ebbinghaus’ Forgetting Curve, to provide students with learning opportunities in 6-day cycles: (i) day 1: a pre-class learning activity (reading or video) and a quiz; (ii) day 2: in-class Kahoot low-stakes quiz with discussion, a short lecture with embedded time for problem-solving and discussion, and in-class activities (labs, group projects); (iii) day 4: homework due two days after the class; (iv) day 6: homework self-reflection (autopsy based on provided solutions) two days after homework is due. The assessment of course performance is based on the well-characterized force concept inventory (FCI) exam that is administered before the intro to mechanics course and both before and after the Physics I course; and on student performance (grades) in Physics and Statics courses. Results from the FCI pre-test show that students who took the introduction to mechanics course (treatment group) started the physics course with a much better understanding of force concepts than other students in the course. The FCI post-test shows better normalized gain for the treatment group, compared to other students, which is also aligned with student performance in the course. Additionally, student performance is significantly better in statics, with 25% DWF rate compared to 50% for the other students. In summary, the framework of the course, which focuses on providing students with in-depth understanding of force concepts, has led to better learning and performance in Physics I, but importantly it has also helped students achieve better performance in the Statics course, the first fundamental course in civil and mechanical engineering programs. 
    more » « less