skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Powered by AI: Examining How AI Descriptions Influence Perceptions of Fertility Tracking Applications
Recently, there has been a proliferation of personal health applications describing to use Artificial Intelligence (AI) to assist health consumers in making health decisions based on their data and algorithmic outputs. However, it is still unclear how such descriptions influence individuals' perceptions of such apps and their recommendations. We therefore investigate how current AI descriptions influence individuals' attitudes towards algorithmic recommendations in fertility self-tracking through a simulated study using three versions of a fertility app. We found that participants preferred AI descriptions with explanation, which they perceived as more accurate and trustworthy. Nevertheless, they were unwilling to rely on these apps for high-stakes goals because of the potential consequences of a failure. We then discuss the importance of health goals for AI acceptance, how literacy and assumptions influence perceptions of AI descriptions and explanations, and the limitations of transparency in the context of algorithmic decision-making for personal health.  more » « less
Award ID(s):
2237389
PAR ID:
10540814
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
7
Issue:
4
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 24
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Objective Fertility is becoming increasingly supported by consumer health technologies, especially mobile apps that support self-tracking activities. However, it is not clear whether the apps support the variety of goals and life events of those who menstruate, especially during transitions between them. Methods Thirty-one of the most popular fertility apps were evaluated, analyzing data from three sources: the content of app store pages, app features, and user reviews. Findings Results suggest that fertility apps are designed to support specific life goals of people who menstruate, offering several data collection features and limited feedback options. However, users often desire holistic tracking that encompasses a variety of goals, life events, and the transitions among them. Discussion These findings suggest fertility patients can benefit more from holistic self-tracking and provide insights for future design of consumer health technologies that better support holistic fertility tracking. Conclusion Fertility apps have the potential to support varied experiences of people who menstruate. But to achieve that, apps need to expand their support by offering ways for more users to perform holistic, personalized, and personally meaningful tracking, so they can derive long-term benefit from the data they collect. 
    more » « less
  2. AI-assisted decision making becomes increasingly prevalent, yet individuals often fail to utilize AI-based decision aids appropriately especially when the AI explanations are absent, potentially as they do not reflect on AI’s decision recommendations critically. Large language models (LLMs), with their exceptional conversational and analytical capabilities, present great opportunities to enhance AI-assisted decision making in the absence of AI explanations by providing natural-language-based analysis of AI’s decision recommendation, e.g., how each feature of a decision making task might contribute to the AI recommendation. In this paper, via a randomized experiment, we first show that presenting LLM-powered analysis of each task feature, either sequentially or concurrently, does not significantly improve people’s AI-assisted decision performance. To enable decision makers to better leverage LLM-powered analysis, we then propose an algorithmic framework to characterize the effects of LLM-powered analysis on human decisions and dynamically decide which analysis to present. Our evaluation with human subjects shows that this approach effectively improves decision makers’ appropriate reliance on AI in AI-assisted decision making. 
    more » « less
  3. When people receive advice while making difficult decisions, they often make better decisions in the moment and also increase their knowledge in the process. However, such incidental learning can only occur when people cognitively engage with the information they receive and process this information thoughtfully. How do people process the information and advice they receive from AI, and do they engage with it deeply enough to enable learning? To answer these questions, we conducted three experiments in which individuals were asked to make nutritional decisions and received simulated AI recommendations and explanations. In the first experiment, we found that when people were presented with both a recommendation and an explanation before making their choice, they made better decisions than they did when they received no such help, but they did not learn. In the second experiment, participants first made their own choice, and only then saw a recommendation and an explanation from AI; this condition also resulted in improved decisions, but no learning. However, in our third experiment, participants were presented with just an AI explanation but no recommendation and had to arrive at their own decision. This condition led to both more accurate decisions and learning gains. We hypothesize that learning gains in this condition were due to deeper engagement with explanations needed to arrive at the decisions. This work provides some of the most direct evidence to date that it may not be sufficient to provide people with AI-generated recommendations and explanations to ensure that people engage carefully with the AI-provided information. This work also presents one technique that enables incidental learning and, by implication, can help people process AI recommendations and explanations more carefully. 
    more » « less
  4. People work with AI systems to improve their decision making, but often under- or over-rely on AI predictions and perform worse than they would have unassisted. To help people appropriately rely on AI aids, we propose showing them behavior descriptions, details of how AI systems perform on subgroups of instances. We tested the efficacy of behavior descriptions through user studies with 225 participants in three distinct domains: fake review detection, satellite image classification, and bird classification. We found that behavior descriptions can increase human-AI accuracy through two mechanisms: helping people identify AI failures and increasing people's reliance on the AI when it is more accurate. These findings highlight the importance of people's mental models in human-AI collaboration and show that informing people of high-level AI behaviors can significantly improve AI-assisted decision making. 
    more » « less
  5. Recent advances in AI models have increased the integration of AI-based decision aids into the human decision making process. To fully unlock the potential of AI- assisted decision making, researchers have computationally modeled how humans incorporate AI recommendations into their final decisions, and utilized these models to improve human-AI team performance. Meanwhile, due to the “black-box” nature of AI models, providing AI explanations to human decision makers to help them rely on AI recommendations more appropriately has become a common practice. In this paper, we explore whether we can quantitatively model how humans integrate both AI recommendations and explanations into their decision process, and whether this quantitative understanding of human behavior from the learned model can be utilized to manipulate AI explanations, thereby nudging individuals towards making targeted decisions. Our extensive human experiments across various tasks demonstrate that human behavior can be easily influenced by these manipulated explanations towards targeted outcomes, regardless of the intent being adversarial or benign. Furthermore, individuals often fail to detect any anomalies in these explanations, despite their decisions being affected by them. 
    more » « less