skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Getting the Lead Out: A Career-Long Perspective on Leaded Gasoline, Dust, Soil, and Proactive Pediatric Exposure Prevention
This commentary considers the long arc of lead (Pb) poisoning from antiquity to the 21st century. While Pb exposure is commonly attributed to paint or water, this article aims to discuss the underrecognized impacts of air Pb and soil Pb and to address controversial misconceptions related to these exposure sources. The Roman Aristocracy experienced lead poisoning mainly from the ingestion of foods, lead cookware, and lead-contaminated water and wine, but by the 20th century, lead exposure occurred by ingestion and inhalation. The introduction of tetraethyl lead (TEL) additives in gasoline was approved in 1925 in the US and produced an exponential increase in inhalable air lead exhaust particles through the 1970s. These five decades of widespread lead aerosol exposure were enabled by the Lead Industries Association (LIA), which confounded pediatricians, healthcare providers, and government agencies by promoting lead-based paint as the primary agent of childhood lead exposure. Empirical evidence of lead poisoning, environmental exposures, and proactive lead prevention in the general population was impossible until analytical instruments became commonly available for clinical studies and environmental measurements in the 1960s and 1970s. Soil studies in Baltimore, Maryland, beginning in the mid-1970s, indicated that lead particles exhausted from vehicles fueled by leaded gasoline excessively contaminated urban soils compared with non-urban soils. The invisible lead-contaminated air fouled multiple exposure routes via inhalation and ingestion. In addition to misunderstandings about sources of lead exposure, misinformation currently abounds regarding the timeline of banning lead in gasoline. The US Center for Disease Control (CDC) lists the ban as beginning in 1996. The banning of leaded gasoline first occurred in Japan starting in 1972, and after a 1984 Senate Hearing, the US Congress agreed on a rapid phasedown. A US Environmental Protection Agency (EPA) timeline confirmed that most leaded gasoline was banned by the end of 1986. Banning leaded gasoline was associated with sharp declines in the US population’s blood lead, which prompted global efforts to ban leaded gasoline. The eventual result was a complete global ban on highway use of leaded gasoline achieved in August 2021. Leaded gasoline is still used in piston-engine aircraft and the US EPA is proceeding to complete the ban on lead additives in fuel. Using precautionary principles to recover lead-contaminated urban environments and prevent new toxicant exposures are essential challenges and opportunities for present and future generations.  more » « less
Award ID(s):
2147334
PAR ID:
10540847
Author(s) / Creator(s):
;
Publisher / Repository:
European Society of Medicine
Date Published:
Journal Name:
Medical Research Archives
Volume:
11
Issue:
5
ISSN:
2375-1916
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Albeit slow and not without its challenges, lead (Pb) emissions and sources in the United States (U.S.) have decreased immensely over the past several decades. Despite the prevalence of childhood Pb poisoning throughout the twentieth century, most U.S. children born in the last two decades are significantly better off than their predecessors in regard to Pb exposure. However, this is not equal across demographic groups and challenges remain. Modern atmospheric emissions of Pb in the U.S. are nearly negligible since the banning of leaded gasoline in vehicles and regulatory controls on Pb smelting plants and refineries. This is evident in the rapid decrease of atmospheric Pb concentrations across the U.S. over the last four decades. One of the most significant remaining contributors to air Pb is aviation gasoline (avgas), which is minor compared to former Pb emissions. However, continual exposure risks to Pb exist in older homes and urban centers, where leaded paint and/or historically contaminated soils + dusts can still harm children. Thus, while effective in eliminating nearly all primary sources of Pb in the environment, the slow rate of U.S. Pb regulation has led to legacy sources of Pb in the environment. More proactive planning, communication, and research of commonly used emerging contaminants of concern that can persist in the environment long after their initial use (i.e., PFAS) should be prioritized so that the same mistakes are not made again. 
    more » « less
  2. Abstract Lead (Pb) is a neurotoxicant that particularly harms young children. Urban environments are often plagued with elevated Pb in soils and dusts, posing a health exposure risk from inhalation and ingestion of these contaminated media. Thus, a better understanding of where to prioritize risk screening and intervention is paramount from a public health perspective. We have synthesized a large national data set of Pb concentrations in household dusts from across the United States (U.S.), part of a community science initiative called “DustSafe.” Using these results, we have developed a straightforward logistic regression model that correctly predicts whether Pb is elevated (>80 ppm) or low (<80 ppm) in household dusts 75% of the time. Additionally, our model estimated 18% false negatives for elevated Pb, displaying that there was a low probability of elevated Pb in homes being misclassified. Our model uses only variables of approximate housing age and whether there is peeling paint in the interior of the home, illustrating how a simple and successful Pb predictive model can be generated if researchers ask the right screening questions. Scanning electron microscopy supports a common presence of Pb paint in several dust samples with elevated bulk Pb concentrations, which explains the predictive power of housing age and peeling paint in the model. This model was also implemented into an interactive mobile app that aims to increase community‐wide participation with Pb household screening. The app will hopefully provide greater awareness of Pb risks and a highly efficient way to begin mitigation. 
    more » « less
  3. Aging water infrastructure renewal in urban areas creates opportunities to systematically implement green infrastructure (GI) systems. However, historical soil contamination from gasoline lead additives, steel manufacturing by-products, and other historical industry raise the potential that novel GI drainage patterns and geochemical environments may mobilize these legacy pollutants to green infrastructure sites previously isolated from most hydrologic flows. Characterization of GI soil chemistries across GI type to build on previous observations in other cites/regions is fundamental to accurate assessments of these emerging management scenarios and the resultant risk of increased metal exposures in downstream environments. In particular, clarification of ecosystem services this metal sequestration may provide are vital to comprehensive assessment of green infrastructure function. During 2021, soil metal chemistry, specifically, As, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn was measured at a high spatial resolution in six Pittsburgh (Pennsylvania, United States) GI installations using a portable X-ray Fluorescence Spectrometer. Patterns of trace metal accumulation were identified in these installations and evaluated as a function of site age and GI connection to road systems. Trace metals including chromium, copper, manganese, and zinc all seem to be accumulating at roadside edges. Remobilization of historically contaminated soils also seems to be a potential mechanism for transporting legacy trace metal contamination, particularly lead, into GI systems. However, metals were not clearly accumulating in installations less connected to road inputs. These findings are consistent with literature reports of trace metal transport to GI systems and reconfirm that clarification of these processes is fundamental to effective stormwater planning and management. 
    more » « less
  4. One-third of children globally have blood lead levels (BLLs) exceeding the (former) US CDC reference value of 5 μg/dL; this value may be as high as one-half for children in low- and middle-income countries (LMICs). Lead exposure occurs through a variety of routes (e.g., water, dust, air), and in LMICs specifically, informal economies (e.g., battery recycling) can drive lead exposures due, in part, to absent regulation. Previous work by our team identified a ubiquitous source of lead (Pb), in the form of Pb-containing components used in manually operated pumps, in Toamasina, Madagascar. Characterization of BLLs of children exposed to this drinking water, and identification of additional exposure routes were needed. BLLs were measured for 362 children (aged 6 months to 6 years) in parallel with surveying to assess 14 risk factors related to demographics/socioeconomics, diet, use of pitcher pumps, and parental occupations. BLL data were also compared against a recent meta-review of BLLs for LMICs. Median childhood BLL (7.1 μg/dL) was consistent with those of other Sub-Saharan African LMICs (6.8 μg/dL) and generally higher than LMICs in other continents. Risk factors significantly associated (p < 0.05, univariate logistic regression) with elevated BLL (at ≥ 5 μg/dL) included male gender, living near a railway or major roadway (owing potentially to legacy lead pollution), having lower-cost flooring, daily consumption of foods (beans, vegetables, rice) commonly cooked in recycled aluminum pots (a previously identified lead source for this community), and a maternal occupation (laundry-person) associated with lower socioeconomic status (SES). Findings were similar at the ≥ 10 μg/dL BLL status. Our methods and findings may be appropriate in identifying and reducing lead exposures for children in other urbanizing cities, particularly in Sub-Saharan Africa, where lead exposure routes are complex and varied owing to informal economics and substantial legacy pollution. 
    more » « less
  5. Heavy metal contamination in urban environments, particularly lead (Pb) pollution, is a health hazard both to humans and ecological systems. Despite wide recognition of urban metal pollution in many cities, there is still relatively limited research regarding heavy metal distribution and transport at the household-scale between soils and indoor dusts—the most important scale for actual human interaction and exposure. Thus, using community-scientist-generated samples in Indianapolis, IN (USA), we applied bulk chemistry, Pb isotopes, and scanning electron microscopy (SEM) to illustrate how detailed analytical techniques can aid in interpretation of Pb pollution distribution at the household-scale. Our techniques provide definitive evidence for Pb paint sourcing in some homes, while others may be polluted with Pb from past industrial/vehicular sources. SEM revealed anthropogenic particles suggestive of Pb paint and the widespread occurrence of Fe-rich metal anthropogenic spherules across all homes, indicative of pollutant transport processes. The variability of Pb pollution at the household scale evident in just four homes is a testament to the heterogeneity and complexity of urban pollution. Future urban pollution research efforts would do well to utilize these more detailed analytical methods on community-sourced samples to gain better insight into where the Pb came from and how it currently exists in the environment. However, these methods should be applied after large-scale pollution screening techniques such as portable X-ray fluorescence (XRF), with more detailed analytical techniques focused on areas where bulk chemistry alone cannot pinpoint dominant pollution mechanisms and where community scientists can also give important metadata to support geochemical interpretations. 
    more » « less